10,388 research outputs found
Interhemispheric comparison of atmospheric circulation features as evaluated from Nimbus satellite data
General circulation parameters in the Northern Hemisphere are calculated using atmospheric thermal structure obtained from Nimbus 3 SIRS multi-channel radiance information. The thermal structure up to 10 mb is obtained by using a regression technique with thickness between pressure levels as the dependent variable. General circulation parameters calculated on a daily basis include zonal and eddy available potential energy, and zonal and eddy kinetic energy. A second set of calculations is performed using National Meteorological Center grid data. A comparison of the two sets of calculations indicates that, although the energies calculated from the SIRS-derived structure underestimate the actual energies, maxima, minima, and trends are well identified. An example of mid-stratospheric energy changes during a breakdown of the polar-night vortex is also given
Some observed seasonal changes in extratropical general circulation: A study in terms of vorticity
Extratropical eddy distributions in four months typical of the four seasons are treated in terms of temporal mean and temporal r.m.s. values of the geostrophic relative vorticity. The geographical distributions of these parameters at the 300 mb level show that the arithmetic mean fields are highly biased representatives of the extratropical eddy distributions. The zonal arithmetic means of these parameters are also presented. These show that the zonal-and-time mean relative vorticity is but a small fraction of the zonal mean of the temporal r.m.s. relative vorticity, K. The reasons for considering the r.m.s. values as the temporal normal values of vorticity in the extratropics are given in considerable detail. The parameter K is shown to be of considerable importance in locating the extratropical frontal jet streams (EFJ) in time-and-zonal average distributions. The study leads to an understanding of the seasonal migrations of the EFJ which have not been explored until now
A comparison of two methods of estimating propensity scores after multiple imputation
In many observational studies, analysts estimate treatment effects using propensity scores, e.g. by matching or sub-classifying on the scores. When some values of the covariates are missing, analysts can use multiple imputation to fill in the missing data, estimate propensity scores based on the m completed datasets, and use the propensity scores to estimate treatment effects. We compare two approaches to implement this process. In the first, the analyst estimates the treatment effect using propensity score matching within each completed data set, and averages the m treatment effect estimates. In the second approach, the analyst averages the m propensity scores for each record across the completed datasets, and performs propensity score matching with these averaged scores to estimate the treatment effect. We compare properties of both methods via simulation studies using artificial and real data. The simulations suggest that the second method has greater potential to produce substantial bias reductions than the first, particularly when the missing values are predictive of treatment assignment
Acquiring Correct Knowledge for Natural Language Generation
Natural language generation (NLG) systems are computer software systems that
produce texts in English and other human languages, often from non-linguistic
input data. NLG systems, like most AI systems, need substantial amounts of
knowledge. However, our experience in two NLG projects suggests that it is
difficult to acquire correct knowledge for NLG systems; indeed, every knowledge
acquisition (KA) technique we tried had significant problems. In general terms,
these problems were due to the complexity, novelty, and poorly understood
nature of the tasks our systems attempted, and were worsened by the fact that
people write so differently. This meant in particular that corpus-based KA
approaches suffered because it was impossible to assemble a sizable corpus of
high-quality consistent manually written texts in our domains; and structured
expert-oriented KA techniques suffered because experts disagreed and because we
could not get enough information about special and unusual cases to build
robust systems. We believe that such problems are likely to affect many other
NLG systems as well. In the long term, we hope that new KA techniques may
emerge to help NLG system builders. In the shorter term, we believe that
understanding how individual KA techniques can fail, and using a mixture of
different KA techniques with different strengths and weaknesses, can help
developers acquire NLG knowledge that is mostly correct
Interhemispheric comparison of atmospheric circulation features as evaluated from Nimbus satellite data. A comparison of the structure and flow characteristics of the upper troposphere and stratosphere of the Northern and Southern Hemispheres
The general circulations of the Northern and Southern Hemispheres are compared with regard to the upper troposphere and stratosphere, using atmospheric structure obtained from multi-channel radiance data from the satellite infrared spectrometer instrument aboard the Nimbus 3 spacecraft. The inter-hemispheric comparisons are based on two months of data (one summer month and one winter month) in each hemisphere. Topics studied include: (1) mean meridional circulation in the Southern Hemisphere stratosphere; (2) magnitude and distribution of tropospheric eddy heat flux; (3) relative importance of standing and transient eddies in the two hemispheres; (4) magnitudes of energy cycle components; and (5) the relation of vortex structure to the breakdown climatology of the Antarctic stratospheric polar vortex
Automatic Error Localization for Software using Deductive Verification
Even competent programmers make mistakes. Automatic verification can detect
errors, but leaves the frustrating task of finding the erroneous line of code
to the user. This paper presents an automatic approach for identifying
potential error locations in software. It is based on a deductive verification
engine, which detects errors in functions annotated with pre- and
post-conditions. Using an automatic theorem prover, our approach finds
expressions in the code that can be modified such that the program satisfies
its specification. Scalability is achieved by analyzing each function in
isolation. We have implemented our approach in the widely used Frama-C
framework and present first experimental results. This is an extended version
of [8], featuring an additional appendix.Comment: This is an extended version of [8], featuring an additional appendi
Estimating Refractive Index Spectra in Regions of Clear Air Turbulence
Estimation of refractive index spectra in regions of clear air turbulenc
Atmospheric planetary wave response to external forcing
The tools of observational analysis, complex general circulation modeling, and simpler modeling approaches were combined in order to attack problems on the largest spatial scales of the earth's atmosphere. Two different models were developed and applied. The first is a two level, global spectral model which was designed primarily to test the effects of north-south sea surface temperature anomaly (SSTA) gradients between the equatorial and midlatitude north Pacific. The model is nonlinear, contains both radiation and a moisture budget with associated precipitation and surface evaporation, and utilizes a linear balance dynamical framework. Supporting observational analysis of atmospheric planetary waves is briefly summarized. More extensive general circulation models have also been used to consider the problem of the atmosphere's response, especially in the horizontal propagation of planetary scale waves, to SSTA
Atmospheric variability and air-sea interaction
The topics studied include: (1) processing of Northern Hemispheric precipitation data, in order to fill in the transition seasons to provide a continuous 40 year data base on the variability of continental precipitation; (2) comparison of seasonally averaged fields of sea surface temperature obtained from ship observations in the North Atlantic and North Pacific in 1970 with the corresponding fields inferred from satellite observations; (3) estimation of seasonal average of total precipitable water at those admittedly few oceanic stations where repeated vertical soundings were made in 1970 and comparison with corresponding values inferred from satellite measurements; (4) comparison of seasonally averaged evaporation fields determined from ground based observations in 1970 with the field of divergence of the seasonal total horizontal water vapor flux inferred from satellite total water measurements and NMC wind data for the lower troposphere; (5) examination of meaning of convection-inversion index
- …