820 research outputs found

    Horizon Mass Theorem

    Full text link
    A new theorem for black holes is found. It is called the horizon mass theorem. The horizon mass is the mass which cannot escape from the horizon of a black hole. For all black holes: neutral, charged or rotating, the horizon mass is always twice the irreducible mass observed at infinity. Previous theorems on black holes are: 1. the singularity theorem, 2. the area theorem, 3. the uniqueness theorem, 4. the positive energy theorem. The horizon mass theorem is possibly the last general theorem for classical black holes. It is crucial for understanding Hawking radiation and for investigating processes occurring near the horizon.Comment: A new theorem for black holes is establishe

    Warped product approach to universe with non-smooth scale factor

    Full text link
    In the framework of Lorentzian warped products, we study the Friedmann-Robertson-Walker cosmological model to investigate non-smooth curvatures associated with multiple discontinuities involved in the evolution of the universe. In particular we analyze non-smooth features of the spatially flat Friedmann-Robertson-Walker universe by introducing double discontinuities occurred at the radiation-matter and matter-lambda phase transitions in astrophysical phenomenology.Comment: 10 page

    Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics: Spin 1

    Get PDF
    A previous evaluation of one-photon loop corrections to the energy-momentum tensor has been extended to particles with unit spin and speculations are presented concerning general properties of such forms.Comment: 21 pages, 1 Figur

    Orbital Selective Magnetism in the Spin-Ladder Iron Selenides Ba1−x_{1-x}Kx_{x}Fe2_2Se3_3

    Full text link
    Here we show that the 2.80(8) {\mu}B/Fe block antiferromagnetic order of BaFe2Se3 transforms into stripe antiferromagnetic order in KFe2Se3 with a decrease in moment to 2.1(1) {\mu}B/Fe. This reduction is larger than expected from the change in electron count from Ba2+^{2+} to K+^{+}, and occurs with the loss of the displacements of Fe atoms from ideal positions in the ladders, as found by neutron pair distribution function analysis. Intermediate compositions remain insulating, and magnetic susceptibility measurements show a suppression of magnetic order and probable formation of a spin-glass. Together, these results imply an orbital-dependent selection of magnetic versus bonded behavior, driven by relative bandwidths and fillings.Comment: Final versio

    INSIDE – In-situ Diagnostics in Water Electrolysers

    Get PDF
    In this joint R&D project supported by the EU Fuel Cell and Hydrogen Joint Undertaking, an electrochemical in-situ diagnostics tool for the monitoring of locally resolved current densities in polymer electrolyte membrane fuel cells, is adapted to three different water electrolysis technologies. The developed tools allow correlating performance issues and ageing processes with local anomalies. The corresponding mechanisms are investigated with ex-situ analytics. The patented segmented printed circuit board (PCB) for the monitoring of current density distributions in PEM based fuel cells is used and steadily improved at DLR. Applications are specific degradation mechanisms and optimisation of operation parameters. The real time technology allows, e. g., to observe and mitigate local deactivation of the fuel cell due to condensing water or irreversible local ageing. It has already been adapted for the use in Redox-Flow Battery systems and is ready for the next development step. In water electrolysis, the technological boundaries are different to that of fuel cells, but similarly, there is need for systematic optimisation by locally resolved in-situ analytics and, in particular for an on-line diagnostics tool. The challenges for the adaptation of the segmented board technology to chemical and physical environment are different for each of the three involved technologies: - Alkaline water electrolysis - Proton exchange membrane based water electrolysis - Anion exchange membrane based water electrolysis For each technology, pH and chemical ambience, pressure temperature, bubble formation, and typical range of current densities hold different requirements to layout and corrosion stability. The proof of concept has already been shown in PEM based electrolysis

    Formation of desert rose structures in vacuum plasma sprayed electrodes for alkaline electrolysis

    Get PDF
    The EU FCH-JU RESelyser project is concerned with the development of high pressure, high efficiency and low cost alkaline water electrolysers that can be operated variably and intermittently to meet the demands for integration into energy networks relying on fluctuating renewable energy. The project utilizes NiAlMo alloy electrodes produced at the German Aerospace Center (DLR) by vacuum plasma spraying (VPS). VPS results in a heterogeneous microstructure consisting of a multitude of intermetallic phase sub domains and pores. Prior to electrolysis operation the electrodes are activated by leaching of Al and some Al containing intermetallic phases leaving micrometer pores and nanometer dendritic pores increasing the surface area available for the electrolysis reactions. The vacuum plasma sprayed electrodes were analyzed by high resolution SEM and TEM before and after electrolysis operation and after storage in water. Analyses of cross sections and electrode surfaces revealed desert rose like nano flake structures on the surface and in the pores on several electrodes. The formation of the desert rose structure appeared to be related to the electrolysis operation as well as the duration of storage in distilled water. The size of the faceted flakes varied from tens of nm to a couple of µm where the thickness varied from a few nm to ~50 nm. The desert rose structure was confirmed by TEM to consist primarily of NiO and Al2NiO4 like phases (similar lattice parameters). The possible implications for the application and performance of the electrodes are discussed

    Elucidating the Performance Limitations of Alkaline Electrolyte Membrane Electrolysis: Dominance of Anion Concentration in Membrane Electrode Assembly

    Get PDF
    Anion exchange membrane water electrolyzers (AEMWEs) offer a cost-effective technology for producing green hydrogen. Here, an AEMWE with atmospheric plasma spray non-precious metal electrodes was tested in 0.1 to 1.0 M KOH solution, correlating performance with KOH concentration systematically. The highest cell performance was achieved at 1.0 M KOH (ca. 0.4 A cm−2 at 1.80 V), which was close to a traditional alkaline electrolysis cell with ≈6.0 M KOH. The cell exhibited 0.13 V improvement in the performance in 0.30 M KOH compared with 0.10 M KOH at 0.5 A cm−2. However, this improvement becomes more limited when further increasing the KOH concentration. Electrochemical impedance and numerical simulation results show that the ohmic resistance from the membrane was the most notable limiting factor to operate in low KOH concentration and the most sensitive to the changes in KOH concentration at 0.5 A cm−2. It is suggested that the effect of activation loss is more dominant at lower current densities; however, the ohmic loss is the most limiting factor at higher current densities, which is a current range of interest for industrial applications

    Cosmological Constant, Conical Defect and Classical Tests of General Relativity

    Get PDF
    We investigate the perihelion shift of the planetary motion and the bending of starlight in the Schwarzschild field modified by the presence of a Λ\Lambda-term plus a conical defect. This analysis generalizes an earlier result obtained by Islam (Phys. Lett. A 97, 239, 1983) to the case of a pure cosmological constant. By using the experimental data we obtain that the parameter ϵ\epsilon characterizing the conical defect is less than 10−910^{-9} and 10−710^{-7}, respectively, on the length scales associated with such phenomena. In particular, if the defect is generated by a cosmic string, these values correspond to limits on the linear mass densities of 1019g/cm10^{19}g/cm and 1021g/cm10^{21}g/cm, respectively.Comment: 9 pages, no figures, revte

    Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime

    Full text link
    We analyse the concept of active gravitational mass for Reissner-Nordstrom spacetime in terms of scalar polynomial invariants and the Karlhede classification. We show that while the Kretschmann scalar does not produce the expected expression for the active gravitational mass, both scalar polynomial invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio

    The Boundary Layer for the Reissner–Mindlin Plate Model

    Full text link
    • …
    corecore