1,032 research outputs found
Broadening effects due to alloy scattering in Quantum Cascade Lasers
We report on calculations of broadening effects in QCL due to alloy
scattering. The output of numerical calculations of alloy broadened Landau
levels compare favorably with calculations performed at the self-consistent
Born approximation. Results for Landau level width and optical absorption are
presented. A disorder activated forbidden transition becomes significant in the
vicinity of crossings of Landau levels which belong to different subbands. A
study of the time dependent survival probability in the lowest Landau level of
the excited subband is performed. It is shown that at resonance the population
relaxation occurs in a subpicosecond scale.Comment: 7 pages, 8 figure
Crossover to non-Fermi-liquid spin dynamics in cuprates
The antiferromagnetic spin correlation function , the staggered
spin susceptibility and the energy scale are studied numerically within the t-J model and the Hubbard
model, as relevant to cuprates. It is shown that , related to the
onset of the non-Fermi-liquid spin response at , is very low in
the regime below the 'optimum' hole doping , while it
shows a steep increase in the overdoped regime. A quantitative analysis of NMR
spin-spin relaxation-rate for various cuprates reveals a similar
behavior, indicating on a sharp, but continuous, crossover between a
Fermi-liquid and a non-Fermi-liquid behavior as a function of doping.Comment: 4 pages, 4 figures. Submitted to PR
Optical phonon scattering and theory of magneto-polarons in a quantum cascade laser in a strong magnetic field
We report a theoretical study of the carrier relaxation in a quantum cascade
laser (QCL) subjected to a strong magnetic field. Both the alloy (GaInAs)
disorder effects and the Frohlich interaction are taken into account when the
electron energy differences are tuned to the longitudinal optical (LO) phonon
energy. In the weak electron-phonon coupling regime, a Fermi's golden rule
computation of LO phonon scattering rates shows a very fast non-radiative
relaxation channel for the alloy broadened Landau levels (LL's). In the strong
electron-phonon coupling regime, we use a magneto-polaron formalism and compute
the electron survival probabilities in the upper LL's with including increasing
numbers of LO phonon modes for a large number of alloy disorder configurations.
Our results predict a nonexponential decay of the upper level population once
electrons are injected in this state.Comment: 10 pages, 23 figure
Characterization of quasiholes in fractional Chern insulators
We provide a detailed study of the Abelian quasiholes of bosonic
fractional quantum Hall states on the torus geometry and in fractional Chern
insulators. We find that the density distribution of a quasihole in a
fractional Chern insulator can be related to that of the corresponding
fractional quantum Hall state by choosing an appropriate length unit on the
lattice. This length unit only depends on the lattice model that hosts the
fractional Chern insulator. Therefore, the quasihole size in a fractional Chern
insulator can be predicted for any lattice model once the quasihole size of the
corresponding fractional quantum Hall state is known. We discuss the effect of
the lattice embedding on the quasihole size. We also perform the braiding of
quasiholes for fractional Chern insulator models to probe the fractional
statistics of these excitations. The numerical values of the braiding phases
accurately match the theoretical predictions.Comment: 8 pages, 7 figures, published versio
Bosonic integer quantum Hall effect in optical flux lattices.
In two dimensions strongly interacting bosons in a magnetic field can realize a bosonic integer quantum Hall state, the simplest two-dimensional example of a symmetry-protected topological phase. We propose a realistic implementation of this phase using an optical flux lattice. Through exact diagonalization calculations, we show that the system exhibits a clear bulk gap and the topological signature of the bosonic integer quantum Hall state. In particular, the calculation of the many-body Chern number leads to a quantized Hall conductance in agreement with the analytical predictions. We also study the stability of the phase with respect to some of the experimentally relevant parameters
Unexpected phase locking of magnetic fluctuations in the multi-k magnet USb
The spin waves in the multi-k antiferromagnet USb soften and become quasielastic well below the antiferromagnetic ordering temperature TN. This occurs without a magnetic or structural transition. It has been suggested that this change is in fact due to dephasing of the different multi-k components: a switch from 3-k to 1-k behavior. In this work, we use inelastic neutron scattering with tridirectional polarization analysis to probe the quasielastic magnetic excitations and reveal that the 3-k structure does not dephase. More surprisingly, the paramagnetic correlations also maintain the same clear phase correlations well above TN (up to at least 1.4TN)
Photometry of supernovae in an image series : methods and application to the Supernova Legacy Survey (SNLS)
We present a technique to measure lightcurves of time-variable point sources
on a spatially structured background from imaging data. The technique was
developed to measure light curves of SNLS supernovae in order to infer their
distances. This photometry technique performs simultaneous PSF photometry at
the same sky position on an image series. We describe two implementations of
the method: one that resamples images before measuring fluxes, and one which
does not. In both instances, we sketch the key algorithms involved and present
the validation using semi-artificial sources introduced in real images in order
to assess the accuracy of the supernova flux measurements relative to that of
surrounding stars. We describe the methods required to anchor these PSF fluxes
to calibrated aperture catalogs, in order to derive SN magnitudes. We find a
marginally significant bias of 2 mmag of the after-resampling method, and no
bias at the mmag accuracy for the non-resampling method. Given surrounding star
magnitudes, we determine the systematic uncertainty of SN magnitudes to be less
than 1.5 mmag, which represents about one third of the current photometric
calibration uncertainty affecting SN measurements. The SN photometry delivers
several by-products: bright star PSF flux mea- surements which have a
repeatability of about 0.6%, as for aperture measurements; we measure relative
astrometric positions with a noise floor of 2.4 mas for a single-image bright
star measurement; we show that in all bands of the MegaCam instrument, stars
exhibit a profile linearly broadening with flux by about 0.5% over the whole
brightness range.Comment: Accepted for publication in A&A. 20 page
Understanding complex magnetic order in disordered cobalt hydroxides through analysis of the local structure
In many ostensibly crystalline materials, unit-cell-based descriptions do not
always capture the complete physics of the system due to disruption in
long-range order. In the series of cobalt hydroxides studied here,
Co(OH)(Cl)(HO), magnetic Bragg diffraction reveals a
fully compensated N\'eel state, yet the materials show significant and open
magnetization loops. A detailed analysis of the local structure defines the
aperiodic arrangement of cobalt coordination polyhedra. Representation of the
structure as a combination of distinct polyhedral motifs explains the existence
of locally uncompensated moments and provides a quantitative agreement with
bulk magnetic measurements and magnetic Bragg diffraction
- …