2,414 research outputs found

    Quantum Key Distribution over Probabilistic Quantum Repeaters

    Full text link
    A feasible route towards implementing long-distance quantum key distribution (QKD) systems relies on probabilistic schemes for entanglement distribution and swapping as proposed in the work of Duan, Lukin, Cirac, and Zoller (DLCZ) [Nature 414, 413 (2001)]. Here, we calculate the conditional throughput and fidelity of entanglement for DLCZ quantum repeaters, by accounting for the DLCZ self-purification property, in the presence of multiple excitations in the ensemble memories as well as loss and other sources of inefficiency in the channel and measurement modules. We then use our results to find the generation rate of secure key bits for QKD systems that rely on DLCZ quantum repeaters. We compare the key generation rate per logical memory employed in the two cases of with and without a repeater node. We find the cross-over distance beyond which the repeater system outperforms the non-repeater one. That provides us with the optimum inter-node distancing in quantum repeater systems. We also find the optimal excitation probability at which the QKD rate peaks. Such an optimum probability, in most regimes of interest, is insensitive to the total distance.Comment: 12 pages, 6 figures; Fig. 5(a) is replace

    Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Get PDF
    Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p

    Information theoretic analysis of LSD scheme

    Get PDF
    In this paper, the capacity region of Low Density Signature Multiple Access Channel (LDS-MAC) is calculated through information theoretic analysis. LDS Code Division Multiple Access (LDS-CDMA) uses spreading sequences of low density for spreading the data symbols in time domain. This technique benefits from a less complex Multiuser Detector (MUD) compared to conventional CDMA with optimum MUD; while keeping the performance close to the single user scenario for up to 200% loaded conditions. Also evaluated is the effect of different factors on the capacity of LDS MAC

    Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect

    Get PDF
    Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality

    Specific Heat of the Ca-Intercalated Graphite Superconductor CaC6_6

    Full text link
    The superconducting state of Ca-intercalated graphite CaC6 has been investigated by specific heat measurements. The characteristic anomaly at the superconducting transition (Tc = 11.4 K) indicates clearly the bulk nature of the superconductivity. The temperature and magnetic field dependence of the electronic specific heat are consistent with a fully-gapped superconducting order parameter. The estimated electron-phonon coupling constant is lambda = 0.60 - 0.74 suggesting that the relatively high Tc of CaC6 can be explained within the weak-coupling BCS approach.Comment: 4 pages, 4 figs, submitted to Phys. Rev. Let

    A review on the medical effects of Capparis spinosa L.

    Get PDF
    Background and aims: Plants are a valuable source of wide range of secondary metabolites. Caper (Capparis spinosa L.) belongs to the Capparaceae family. It has a lot of medical uses especially in medical fields. The aim of this study is to review the medical uses of this plant in nobel studies. Methods: In order to conduct this review study, INLM and Google scholar and Science direct databases were searched for English published articles during 2000-2015. Results: This plant has a lot of traditional and medical use. The whole plant was used for rheumatism. Roots were used as diuretic, astringent, and tonic. Bark root, which has a bitter taste, was used as appetizer, astringent, tonic, ant diarrheic and to treat hemorrhoids and spleen disease. Bark was also used for gout and rheumatism, as expectorant, and for chest diseases. Infusion of stems and root bark were used as anti-diarrheic and febrifuge. Fresh fruits were used in sciatica, and dropsy. Dried and powdered fruit combined with honey was used in colds, rheumatism, gout, sciatica and backache. Seeds were used in feminine sterility and dysmenorrheal and to relieve toothache. Crushed seeds were used for ulcers, scrofula, and ganglions. Conclusion: The paper reviewed was promising medicinal plant with wide range of pharmacological activities which could be utilized in several medical applications because of its effectiveness and safety

    Superconductivity in Heavy Alkaline-Earths Intercalated Graphites

    Full text link
    We report the discovery of superconductivity below 1.65(6) K in Sr-intercalated graphite SrC6, by susceptibility and specific heat (Cp) measurements. In comparison with CaC6, we found that the anisotropy of the upper critical fields for SrC6 is much reduced. The Cp anomaly at Tc is smaller than the BCS prediction indicating an anisotropic superconducting gap for SrC6 similar to CaC6. The significantly lower Tc of SrC6 as compared to CaC6 can be understood in terms of "negative" pressure effects, which decreases the electron-phonon coupling for both in-plane intercalant and the out-of-plane C phonon modes. We observed no superconductivity for BaC6 down to 0.3 K.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    Effect of Pressure on Superconducting Ca-intercalated Graphite CaC6_6

    Full text link
    The pressure effect on the superconducting transition temperature (TcT_c) of the newly-discovered Ca-intercalated graphite compound CaC6_6 has been investigated up to \sim 16 kbar. TcT_c is found to increase under pressure with a large relative ratio Δ\DeltaTcT_c/TcT_c of \approx +0.4 %/kbar. Using first-principles calculations, we show that the large and positive effect of pressure on TcT_c can be explained in the scope of electron-phonon theory due to the presence of a soft phonon branch associated to in-plane vibrations of Ca atoms. Implications of the present findings on the current debate about the superconducting mechanism in graphite intercalation compounds are discussed.Comment: 6 pages, 5 figs, final PRB versio

    Study of Soil Compaction Using X-Ray Computed Tomography

    Get PDF
    The maximum dry density and optimum moisture content obtained from the laboratory compaction curve have been used customarily to characterize the field behavior of compacted soils. It is well known, however, that the microstructure of compacted soils is dependent on the method of compaction. The structure has an important influence on the engineering behavior of compacted soils. Therefore, in order to provide a better description of compacted soils, methods that can quantify the changes in microstructure are needed. In this study, compacted specimens at various densities and water content were scanned using X-ray Computed Tomography (CT). It has been found that there is direct correspondence between the CT numbers, soil dry density and moisture content. The scanning observations showed also the development of shear planes parallel to the surface of the compacted soil, and changes in structure of the soil towards a more uniform arrangement around the point of optimum moisture content. Compaction of the soil beyond the optimum moisture content appears to disperse soil particles with an overall uniform structure
    corecore