260 research outputs found

    Наноалмазы как идеальные наноносители для циансодежащих цитостатиков

    Get PDF
    Цианосодержащие цитостатики - новый класс открытых нами лекарств, которые благодаря цианогруппам хорошо закрепляются на наноалмазах, с увеличением активности

    The Coupled Electron-Ion Monte Carlo Method

    Full text link
    In these Lecture Notes we review the principles of the Coupled Electron-Ion Monte Carlo methods and discuss some recent results on metallic hydrogen.Comment: 38 pages, 6 figures, Lecture notes for the International School of Solid State Physics, 34th course: "Computer Simulation in Condensed Matter: from Materials to Chemical Biology", 20 July-1 August 2005 Erice (Italy). To appear in Lecture Notes in Physics (2006

    Dynamics and Scaling of 2D Polymers in a Dilute Solution

    Get PDF
    The breakdown of dynamical scaling for a dilute polymer solution in 2D has been suggested by Shannon and Choy [Phys. Rev. Lett. {\bf 79}, 1455 (1997)]. However, we show here both numerically and analytically that dynamical scaling holds when the finite-size dependence of the relevant dynamical quantities is properly taken into account. We carry out large-scale simulations in 2D for a polymer chain in a good solvent with full hydrodynamic interactions to verify dynamical scaling. This is achieved by novel mesoscopic simulation techniques

    Tuber borchii fruit body: 2-dimensional profile and protein identification

    Get PDF
    The formation of the fruit body represents the final phase of the ectomycorrhizal fungus T. borchii life cycle. Very little is known concerning the molecular and biochemical processes involved in the fructification phase. 2-DE maps of unripe and ripe ascocarps revealed different protein expression levels and the comparison of the electropherograms led to the identification of specific proteins for each developmental phase. Associating micropreparative 2-DE to microchemical approaches, such as N-terminal sequencing and 2-D gel-electrophoresis mass-spectrometry, proteins playing pivotal roles in truffle physiology were identifie

    Transition metal oxides using quantum Monte Carlo

    Full text link
    The transition metal-oxygen bond appears prominently throughout chemistry and solid-state physics. Many materials, from biomolecules to ferroelectrics to the components of supernova remnants contain this bond in some form. Many of these materials' properties strongly depend on fine details of the TM-O bond and intricate correlation effects, which make accurate calculations of their properties very challenging. We present quantum Monte Carlo, an explicitly correlated class of methods, to improve the accuracy of electronic structure calculations over more traditional methods like density functional theory. We find that unlike s-p type bonding, the amount of hybridization of the d-p bond in TM-O materials is strongly dependant on electronic correlation.Comment: 20 pages, 4 figures, to appear as a topical review in J. Physics: Condensed Matte

    Grid of Lya radiation transfer models for the interpretation of distant galaxies

    Full text link
    Lya is a key diagnostic for numerous observations of distant star-forming galaxies. It's interpretation requires, however, detailed radiation transfer models. We provide an extensive grid of 3D radiation transfer models simulating the Lya and UV continuum radiation transfer in the interstellar medium of star-forming galaxies. We have improved our Monte Carlo MCLya code, and have used it to compute a grid of 6240 radiation transfer models for homogeneous spherical shells containing HI and dust surrounding a central source. The simulations cover a wide range of parameter space. We present the detailed predictions from our models including in particular the Lya escape fraction fesc, the continuum attenuation, and detailed Lya line profiles. The Lya escape fraction is shown to depend strongly on dust content, but also on other parameters (HI column density and radial velocity). The predicted line profiles show a great diversity of morphologies ranging from broad absorption lines to emission lines with complex features. The results from our simulations are distributed in electronic format. Our models should be of use for the interpretation of observations from distant galaxies, for other simulations, and should also serve as an important base for comparison for future, more refined, radiation transfer models.Comment: Accepted for publication in Astronomy & Astrophysics. Results from simulations available at http://obswww.unige.ch/sf

    Path Integral Monte Carlo Simulation of the Low-Density Hydrogen Plasma

    Get PDF
    Restricted path integral Monte Carlo simulations are used to calculate the equilibrium properties of hydrogen in the density and temperature range of 9.83×104ρ0.153gcm39.83 \times 10^{-4}\rm \leq \rho \leq 0.153 \rm gcm^{-3} and 5000T250000K5000 \leq T \leq 250 000 \rm K. We test the accuracy of the pair density matrix and analyze the dependence on the system size, on the time step of the path integral and on the type of nodal surface. We calculate the equation of state and compare with other models for hydrogen valid in this regime. Further, we characterize the state of hydrogen and describe the changes from a plasma to an atomic and molecular liquid by analyzing the pair correlation functions and estimating the number of atoms and molecules present.Comment: 12 pages, 21 figures, submitted for Phys. Rev.

    The Path Integral Monte Carlo Calculation of Electronic Forces

    Full text link
    We describe a method to evaluate electronic forces by Path Integral Monte Carlo (PIMC). Electronic correlations, as well as thermal effects, are included naturally in this method. For fermions, a restricted approach is used to avoid the ``sign'' problem. The PIMC force estimator is local and has a finite variance. We applied this method to determine the bond length of H2_2 and the chemical reaction barrier of H+H2_2\longrightarrow H2_2+H. At low temperature, good agreement is obtained with ground state calculations. We studied the proton-proton interaction in an electron gas as a simple model for hydrogen impurities in metals. We calculated the force between the two protons at two electronic densities corresponding to Na (rs=3.93r_s=3.93) and Al (rs=2.07r_s=2.07) using a supercell with 38 electrons. The result is compared to previous calculations. We also studied the effect of temperature on the proton-proton interaction. At very high temperature, our result agrees with the Debye screening of electrons. As temperature decreases, the Debye theory fails both because of the strong degeneracy of electrons and most importantly, the formation of electronic bound states around the protons.Comment: 18 pages, 10 figure

    Variational Density Matrix Method for Warm Condensed Matter and Application to Dense Hydrogen

    Get PDF
    A new variational principle for optimizing thermal density matrices is introduced. As a first application, the variational many body density matrix is written as a determinant of one body density matrices, which are approximated by Gaussians with the mean, width and amplitude as variational parameters. The method is illustrated for the particle in an external field problem, the hydrogen molecule and dense hydrogen where the molecular, the dissociated and the plasma regime are described. Structural and thermodynamic properties (energy, equation of state and shock Hugoniot) are presented.Comment: 26 pages, 13 figures. submitted to Phys. Rev. E, October 199

    Free energy of the Fr\"ohlich polaron in two and three dimensions

    Full text link
    We present a novel Path Integral Monte Carlo scheme to solve the Fr\"ohlich polaron model. At intermediate and strong electron-phonon coupling, the polaron self-trapping is properly taken into account at the level of an effective action obtained by a preaveraging procedure with a retarded trial action. We compute the free energy at several couplings and temperatures in three and two dimensions. Our results show that the accuracy of the Feynman variational upper bound for the free energy is always better than 5% although the thermodynamics derived from it is not correct. Our estimates of the ground state energies demonstrate that the second cumulant correction to the variational upper bound predicts the self energy to better than 1% at intermediate and strong coupling.Comment: RevTeX 7 pages 3 figures, revised versio
    corecore