1,037 research outputs found

    Duality and spatial inhomogeneity

    Full text link
    Within the framework on non-extensive thermostatistics we revisit the recently advanced q-duality concept. We focus our attention here on a modified q-entropic measure of the spatial inhomogeneity for binary patterns. At a fixed length-scale this measure exhibits a generalised duality that links appropriate pairs of q and q' values. The simplest q q' invariant function, without any free parameters, is deduced here. Within an adequate interval q < qo < q', in which the function reaches its maximum value at qo, this invariant function accurately approximates the investigated q-measure, nitidly evidencing the duality phenomenon. In the close vicinity of qo, the approximate meaningful relation q + q' = 2qo holds.Comment: Contribution to International School and Conference on "Non Extensive Thermodynamics and physical applications", Villasimius-Capo Boi (Cagliari), Italy, 23-30 May 2001, 6 pages, 2 figures, replaced with published versio

    Detecting self-similarity in surface microstructures

    Full text link
    The relative configurational entropy per cell as a function of length scale is a sensitive detector of spatial self-similarity. For Sierpinski carpets the equally separated peaks of the above function appear at the length scales that depend on the kind of the carpet. These peaks point to the presence of self-similarity even for randomly perturbed initial fractal sets. This is also demonstrated for the model population of particles diffusing over the surface considered by Van Siclen, Phys. Rev. E 56 (1997) 5211. These results allow the subtle self-similarity traces to be explored.Comment: 9 pages, 4 figures, presented at ECOSS18 (Vienna) Sept. 199

    Apparatus and method for control of a solid fueled rocket vehicle Patent

    Get PDF
    Solid propellant rocket vehicle thrust control method and apparatu

    Entropic descriptor of a complex behaviour

    Full text link
    We propose a new type of entropic descriptor that is able to quantify the statistical complexity (a measure of complex behaviour) by taking simultaneously into account the average departures of a system's entropy S from both its maximum possible value Smax and its minimum possible value Smin. When these two departures are similar to each other, the statistical complexity is maximal. We apply the new concept to the variability, over a range of length scales, of spatial or grey-level pattern arrangements in simple models. The pertinent results confirm the fact that a highly non-trivial, length-scale dependence of the entropic descriptor makes it an adequate complexity-measure, able to distinguish between structurally distinct configurational macrostates with the same degree of disorder.Comment: 14 pages, 7 figures, extended versio

    Field induced stationary state for an accelerated tracer in a bath

    Full text link
    Our interest goes to the behavior of a tracer particle, accelerated by a constant and uniform external field, when the energy injected by the field is redistributed through collision to a bath of unaccelerated particles. A non equilibrium steady state is thereby reached. Solutions of a generalized Boltzmann-Lorentz equation are analyzed analytically, in a versatile framework that embeds the majority of tracer-bath interactions discussed in the literature. These results --mostly derived for a one dimensional system-- are successfully confronted to those of three independent numerical simulation methods: a direct iterative solution, Gillespie algorithm, and the Direct Simulation Monte Carlo technique. We work out the diffusion properties as well as the velocity tails: large v, and either large -v, or v in the vicinity of its lower cutoff whenever the velocity distribution is bounded from below. Particular emphasis is put on the cold bath limit, with scatterers at rest, which plays a special role in our model.Comment: 20 pages, 6 figures v3:minor corrections in sec.III and added reference

    Front localization in a ballistic annihilation model

    Full text link
    We study the possibility of localization of the front present in a one-dimensional ballistically-controlled annihilation model in which the two annihilating species are initially spatially separated. We construct two different classes of initial conditions, for which the front remains localized.Comment: Using elsart (Elsevier Latex macro) and epsf. 12 Pages, 2 epsf figures. Submitted to Physica

    Effective conductivity in association with model structure and spatial inhomogeneity of polymer/carbon black composites

    Full text link
    The relationship between effective conductivity and cell structure of polyethylene/carbon composites as well as between effective conductivity and spatial distribution of carbon black are discussed. Following Yoshida's model both structures can, in a way, be said to be intermediate between the well known Maxwell-Garnett (MG) and Bruggeman (BR) limiting structures. Using TEM photographs on composites with various carbon blacks we have observed that the larger is Garncarek's inhomogeneity measure H of two-dimensional (2D) representative distribution of the carbon black, the smaller is the effective conductivity of the composite.Comment: 7 pages, 9 figure

    A length-dynamic Tonks gas theory of histone isotherms

    Full text link
    We find exact solutions to a new one-dimensional (1D) interacting particle theory and apply the results to the adsorption and wrapping of polymers (such as DNA) around protein particles (such as histones). Each adsorbed protein is represented by a Tonks gas particle. The length of each particle is a degree of freedom that represents the degree of DNA wrapping around each histone. Thermodynamic quantities are computed as functions of wrapping energy, adsorbed histone density, and bulk histone concentration (or chemical potential); their experimental signatures are also discussed. Histone density is found to undergo a two-stage adsorption process as a function of chemical potential, while the mean coverage by high affinity proteins exhibits a maximum as a function of the chemical potential. However, {\it fluctuations} in the coverage are concurrently maximal. Histone-histone correlation functions are also computed and exhibit rich two length scale behavior.Comment: 5 pp, 3 fig
    corecore