65 research outputs found

    Asymptotic analysis of the dominant mechanisms in the coffee extraction process

    Get PDF
    peer-reviewedExtraction of coffee solubles from roast and ground coffee is a highly complex process, depending on a large number of brewing parameters. We consider a recent, experimentally validated, model of coffee extraction, describing extraction from a coffee bed using a double porosity model, which includes dissolution and transport of coffee. It was shown that this model can accurately describe coffee extraction in two situations: extraction from a dilute suspension of coffee grains and extraction from a packed coffee bed. Despite being based on some simplifying assumptions, this model can only be solved numerically. In this paper we consider asymptotic solutions of the model describing extraction from a packed coffee bed. Such solutions can explicitly relate coffee concentration to the process parameters. For an individual coffee grain, extraction is controlled by a rapid dissolution of coffee from the surface of the grain, in conjunction with a slower diffusion of coffee through the intragranular pore network to the grain surface. Extraction of coffee from the bed also depends on the speed of advection of coffee from the bed. We utilize the small parameter resulting from the ratio of the advection timescale to the grain diffusion timescale to construct asymptotic solutions using the method of matched asymptotic expansions. The asymptotic solutions are compared to numerical solutions and data from coffee extraction experiments. The asymptotic solutions depend on a small number of dimensionless parameters and so are useful to quickly fit extraction curves and investigate the influence of various process parameters on the extraction.PUBLISHEDpeer-reviewe

    miRNA-135a promotes breast cancer cell migration and invasion by targeting HOXA10

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>miRNAs are a group of small RNA molecules regulating target genes by inducing mRNA degradation or translational repression. Aberrant expression of miRNAs correlates with various cancers. Although miR-135a has been implicated in several other cancers, its role in breast cancer is unknown. <it>HOXA10 </it>however, is associated with multiple cancer types and was recently shown to induce p53 expression in breast cancer cells and reduce their invasive ability. Because <it>HOXA10 </it>is a confirmed miR-135a target in more than one tissue, we examined miR-135a levels in relation to breast cancer phenotypes to determine if miR-135a plays role in this cancer type.</p> <p>Methods</p> <p>Expression levels of miR-135a in tissues and cells were determined by poly (A)-RT PCR. The effect of miR-135a on proliferation was evaluated by CCK8 assay, cell migration and invasion were evaluated by transwell migration and invasion assays, and target protein expression was determined by western blotting. GFP and luciferase reporter plasmids were constructed to confirm the action of miR-135a on downstream target genes including <it>HOXA10</it>. Results are reported as means ± S.D. and differences were tested for significance using 2-sided Student"s t-test.</p> <p>Results</p> <p>Here we report that miR-135a was highly expressed in metastatic breast tumors. We found that the expression of miR-135a was required for the migration and invasion of breast cancer cells, but not their proliferation. <it>HOXA10</it>, which encodes a transcription factor required for embryonic development and is a metastasis suppressor in breast cancer, was shown to be a direct target of miR-135a in breast cancer cells. Our analysis showed that miR-135a suppressed the expression of <it>HOXA10 </it>both at the mRNA and protein level, and its ability to promote cellular migration and invasion was partially reversed by overexpression of <it>HOXA10</it>.</p> <p>Conclusions</p> <p>In summary, our results indicate that miR-135a is an onco-miRNA that can promote breast cancer cell migration and invasion. <it>HOXA10 </it>is a target gene for miR-135a in breast cancer cells and overexpression of <it>HOXA10 </it>can partially reverse the miR-135a invasive phenotype.</p

    MicroRNA-135b Regulates Leucine Zipper Tumor Suppressor 1 in Cutaneous Squamous Cell Carcinoma

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness

    Population biology and secondary production of the harvested clam Tivela mactroides (Born, 1778) (Bivalvia, Veneridae) in Southeastern Brazil

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The population structure, growth and production of the trigonal clam Tivela mactroides were investigated by monthly sampling between January 2003 and October 2004 in two areas (southern and northern) of the intertidal and subtidal zones of Caraguatatuba Bay, Southeastern Brazil. Intertidal sampling was carried out in each area along eight transects perpendicular to the shoreline. In the subtidal zone of both areas, one 50-m dredging was performed along five sampling stations arranged on three transects perpendicular to the coast. The intertidal abundance of T.mactroides was higher in the southern (more dissipative conditions) than in the northern area. High abundances occurred in February-March 2004 in the south and in September 2004 in the north. The size structure showed that younger individuals dominated in the sublittoral, indicating that recruitment occurs in this zone, followed by the migration of these individuals to the intertidal, where they complete their life cycle. Tivela mactroides showed continuous reproduction, with 26 cohorts detected in the study period. The lower estimates for the growth index (phi=3.22), mortality rate (Z=2.10year(-1)) and turnover rate (P/B=1.21year(-1)), and conversely the longer life span (2.5years) of T.mactroides in Caraguatatuba Bay (24 degrees S) compared with Venezuelan populations (10 degrees N) suggests a latitudinal pattern of these life-history traits. The high production of T.mactroides in Caraguatatuba Bay was due to continuous recruitment and rapid and continuous growth, and demonstrates the importance of T.mactroides as a biological resource for many marine species and for the local residents.The population structure, growth and production of the trigonal clam Tivela mactroides were investigated by monthly sampling between January 2003 and October 2004 in two areas (southern and northern) of the intertidal and subtidal zones of Caraguatatuba B362221234FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FAPESP [05/60041-6, 06/57575-1]05/60041-606/57575-1This work was partially financed by the Fundação de Amparo à Pesquisa do Estado de Sâo Paulo (FAPESP) with in the Biota/FAPESP – The Biodiversity Virtual Institute Program (www.biota.org.br). We also thank FAPESP for the Programa Jovem Pesquisador em Cent
    corecore