444 research outputs found

    Nano-indentation properties of tungsten carbide-cobalt composites as a function of tungsten carbide crystal orientation

    Get PDF
    Tungsten carbide-cobalt (WC-Co) composites are a class of advanced materials that have unique properties, such as wear resistance, hardness, strength, fracture-toughness and both high temperature and chemical stability. It is well known that the local indentation properties (i.e., nano- and micro-hardness) of the single crystal WC particles dispersed in such composite materials are highly anisotropic. In this paper, the nanoindentation response of the WC grains of a compact, full-density, sintered WC-10Co composite material has been investigated as a function of the crystal orientation. Our nanoindentation survey has shown that the nanohardness was distributed according to a bimodal function. This function was post-processed using the unique features of the finite mixture modelling theory. The combination of electron backscattered difiraction (EBSD) and statistical analysis has made it possible to identify the orientation of the WC crystal and the distinct association of the inherent nanoindentation properties, even for a small set (67) of nanoindentations. The proposed approach has proved to be faster than the already existing ones and just as reliable, and it has confirmed the previous findings concerning the relationship between crystal orientation and indentation properties, but with a significant reduction of the experimental data

    Determination of the yield radius and yield stress in 2198-T3 aluminum alloy by means of the dual-scale instrumented indentation test

    Get PDF
    A new dual-scale instrumented indentation test (DualS-IIT) methodology is here proposed to determine the yield stress (in a tensile-like sense). The methodology involves measuring the bulk yield radius, as defined by the expansion cavity model (ECM), induced by a Vickers macro-indentation in a medium plane cross-section. The bulk yield radius is measured by means of a subsurface nano-hardness survey along the load direction in correspondence to the transition interface between the hemispherical strain hardened region and the surrounding elastic region. The methodology has been applied to an Al–Li (A2198-T3) alloy and a yield stress of 297 MPa has been measured (in agreement with a tensile test); moreover, anomalous plastic deformation behaviour has appeared under indentation. The combination of macro- and nano-indentation tests in one single experiment, as in the proposed methodology, offers a unique experimental basis to directly correlate the mechanical properties of a material at two different scales, which at present is an open issue in the research on indentation

    Correlation between the bath composition and nanoporosity of DC-electrodeposited Ni-Fe alloy

    Get PDF
    The outstanding mechanical strength of as-deposited DC-electrodeposited nanocrystalline (nc) Ni-Fe alloys has been the subject of numerous researches in view of their scientific and practical interest. However, recent studies have reported a dramatic drop in ductility upon annealing above 350°C, associated with a concomitant abnormal rapid grain growth. The inherent cause has been ascribed to the presence of a detrimental product or by product in the bath, which affects either the microstructure or causes defects in the concentration and/or distribution of the as-deposited films. The present work has been inspired by the observed abnormal behaviour of annealed electrodeposited nc Ni-Fe alloy, which has here been addressed by considering the relationship between the composition of the bath (iron-chloride, nickel-sulphate solution, saccharin and ascorbic acid) and deposition defects (e.g. grain boundary pores) in the case of an nc Ni-Fe (Fe 48 wt%) alloy. The current investigations have included X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) in both as-deposited and post-annealed conditions (300°C–400°C). XPS depth profiling with Ar ion sputtering showed a significant amount of C and O impurities entrapped in the foils during deposition. As such impurities are often overlooked in common analytical techniques, new scenarios may need to be rationalised to explain the observed drop in tensile ductility of the as-deposited Ni-Fe alloys

    relation between ribosomal rna genes and the dna satellites of phaseolus coccineus

    Get PDF
    The main band DNA of Phaseolus coccineus has a buoyant density of 1.692 g/ml. In roots, shoots, integuments and suspensors there is a DNA satellite with a buoyant density of 1.700 g/ml. The satellite of the roots, shoots and integuments represents approximately 28.2 %, 29.4 % and 34.7 % respectively of the total DNA. In suspensors, where polyteny occurs, besides the 1.700 g/ml satellite there is a second one at 1.696 g/ml. They represent about 32.9 % and 13.1 % of the total DNA. H3-25S and H3-18S ribosomal RNA of Phaseolus coccineus were hybridized separately with DNA of shoots from CsCl gradient fractions. In both hybridizations the peak of labelling coincides with the position of the DNA satellite with a buoyant density of 1.700 g/ml. Thus the genes for 25S and 18S are mainly located in this DNA component. Hybridization experiments at saturation inputs of H3-25S ribosomal RNA with DNA of shoots, integuments, roots and suspensors give saturation values of 0.72 %, 0.64 %, 0.51 % and 0.42 % respectively. The lower saturation value in the suspensors may indicate an underreplication of ribosomal genes in this tissue. This is partly cancelled out by the amplification in another DNA: that of the second satellite at 1.696 g/ml which does not seem to be part of the ribosomal DNA

    Influence of Pasture on Stearoyl-CoA Desaturase and miRNA 103 Expression in Goat Milk: Preliminary Results

    Get PDF
    The effect of pasture on the stearoyl-CoA desaturase (SCD) and miRNA 103 expression was evaluated on dairy goats divided into two homogeneous groups (G, grazing, and S, stable). Group S was housed in a stall and received alfalfa hay as forage, while group G was led to pasture. The goats of both the groups received the same amount of concentrate. Milk yield did not di↵er statistically between the groups. Group G showed significantly higher fat (4.10% vs. 2.94%, p < 0.01) and protein percentage (3.43% vs. 3.25%; p < 0.05) than group S. Among milk fatty acids, group S showed significantly higher levels of saturated fatty acids (SFA) and lower values of mono-unsaturated fatty acid (MUFA). The percentages of polyunsaturated fatty acid (PUFA) were not different between groups even if pasture significantly affected the percentages of C18:3 and total omega 3. In group G, total CLAs were twice than in group S (0.646% vs. 0.311%; p < 0.01) mainly due to the differences in CLA cis9 trans 11 (0.623% vs. 0.304%; p < 0.01). Milk total CLA in grazing group was significantly (p < 0.01) higher in August according to the highest value of both linoleic and alfa-linolenic acids in the pasture. In grazing animals, SCD expression decreased from April to June, increased in July and decreased again in August, while it was almost unvaried along the trial in group S. By contrast, the expression of miRNA 103 showed a similar trend for both groups, decreasing from April to June, increasing in July and falling down in August. To our knowledge, this is the first observation of the effects of pasture on miRNA expression in milk from ruminant species
    • …
    corecore