7,020 research outputs found

    Comment on "Classical interventions in quantum systems II. Relativistic invariance"

    Get PDF
    In a recent paper [Phys. Rev. A 61, 022117 (2000)], quant-ph/9906034, A. Peres argued that quantum mechanics is consistent with special relativity by proposing that the operators that describe time evolution do not need to transform covariantly, although the measurable quantities need to transform covariantly. We discuss the weaknesses of this proposal.Comment: 4 pages, to appear in Phys. Rev.

    Quantum information and special relativity

    Full text link
    Relativistic effects affect nearly all notions of quantum information theory. The vacuum behaves as a noisy channel, even if the detectors are perfect. The standard definition of a reduced density matrix fails for photon polarization because the transversality condition behaves like a superselection rule. We can however define an effective reduced density matrix which corresponds to a restricted class of positive operator-valued measures. There are no pure photon qubits, and no exactly orthogonal qubit states. Reduced density matrices for the spin of massive particles are well-defined, but are not covariant under Lorentz transformations. The spin entropy is not a relativistic scalar and has no invariant meaning. The distinguishability of quantum signals and their entanglement depend on the relative motion of observers.Comment: RevTex, 6 pages with one figure. Proceedings of TH-2002, Paris, 200

    Optimal distinction between non-orthogonal quantum states

    Get PDF
    Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag

    Complete light absorption in graphene-metamaterial corrugated structures

    Get PDF
    We show that surface-plasmon polaritons excited in negative permittivity metamaterials having shallow periodic surface corrugation profiles can be explored to push the absorption of single and continuous sheets of graphene up to 100%. In the relaxation regime, the position of the plasmonic resonances of the hybrid system is determined by the plasma frequency of the metamaterial, allowing the frequency range for enhanced absorption to be set without the need of engineering graphene.Comment: 6 pages, 4 figures; published version: text revised and references adde

    TRACE-derived temperature and emission measure profiles along long-lived coronal loops: the role of filamentation

    Get PDF
    In a recent letter (ApJ 517, L155) Lenz et al. have shown the evidence of uniform temperature along steady long coronal loops observed by TRACE in two different passbands (171 A and 195 A filters). We propose that such an evidence can be explained by the sub-arcsecond structuring of the loops across the magnetic field lines. In this perspective, we present a model of a bundle of six thin parallel hydrostatic filaments with temperature stratification dictated by detailed energy balance and with temperatures at their apex ranging between 0.8 and 5 MK. If analyzed as a single loop, the bundle would appear isothermal along most of its length.Comment: 9 pages, 4 figs, LaTeX text, PostScript figure

    Solution of the quantum harmonic oscillator plus a delta-function potential at the origin: The oddness of its even-parity solutions

    Full text link
    We derive the energy levels associated with the even-parity wave functions of the harmonic oscillator with an additional delta-function potential at the origin. Our results bring to the attention of students a non-trivial and analytical example of a modification of the usual harmonic oscillator potential, with emphasis on the modification of the boundary conditions at the origin. This problem calls the attention of the students to an inaccurate statement in quantum mechanics textbooks often found in the context of solution of the harmonic oscillator problem.Comment: 9 pages, 3 figure

    Trees and Markov convexity

    Full text link
    We show that an infinite weighted tree admits a bi-Lipschitz embedding into Hilbert space if and only if it does not contain arbitrarily large complete binary trees with uniformly bounded distortion. We also introduce a new metric invariant called Markov convexity, and show how it can be used to compute the Euclidean distortion of any metric tree up to universal factors

    Coronal loop hydrodynamics. The solar flare observedon November 12 1980 revisited: the UV line emission

    Get PDF
    We revisit a well-studied solar flare whose X-ray emission originating from a simple loop structure was observed by most of the instruments on board SMM on November 12 1980. The X-ray emission of this flare, as observed with the XRP, was successfully modeled previously. Here we include a detailed modeling of the transition region and we compare the hydrodynamic results with the UVSP observations in two EUV lines, measured in areas smaller than the XRP rasters, covering only some portions of the flaring loop (the top and the foot-points). The single loop hydrodynamic model, which fits well the evolution of coronal lines (those observed with the XRP and the \FeXXI 1354.1 \AA line observed with the UVSP) fails to model the flux level and evolution of the \OV 1371.3 \AA line.Comment: A&A, in press, 6 pages, 5 figure
    corecore