181 research outputs found
Order and disorder in calciumâsilicateâhydrate
Despite advances in the characterization and modeling of cement hydrates, the atomic order in CalciumâSilicateâHydrate (CâSâH), the binding phase of cement, remains an open question. Indeed, in contrast to the former crystalline model, recent molecular models suggest that the nanoscale structure of CâSâH is amorphous. To elucidate this issue, we analyzed the structure of a realistic simulated model of CâSâH, and compared the latter to crystalline tobermorite, a natural analogue of CâSâH, and to an artificial ideal glass. The results clearly indicate that CâSâH appears as amorphous, when averaged on all atoms. However, an analysis of the order around each atomic species reveals that its structure shows an intermediate degree of order, retaining some characteristics of the crystal while acquiring an overall glass-like disorder. Thanks to a detailed quantification of order and disorder, we show that, while CâSâH retains some signatures of a tobermorite-like layered structure, hydrated species are completely amorphous.ICoME2 Labex (ANR-11-LABX-0053)A*MIDEX projects (ANR-11-IDEX-0001-02)Program âInvestissements dâAvenir
Topological Origin of Fracture Toughening in Complex Solids: the Viewpoint of Rigidity Theory
In order to design tougher materials, it is crucial to understand the
relationship between their composition and their resistance to fracture. To
this end, we investigate the fracture toughness of usual sodium silicate
glasses (NS) and complex calcium--silicate--hydrates (CSH), the binding phase
of cement. Their atomistic structure is described in the framework of the
topological constraints theory, or rigidity theory. We report an analogous
rigidity transition, driven by pressure in NS and by composition in CSH.
Relying both on simulated and available experimental results, we show that
optimally constrained isostatic systems show improved fracture toughness. The
flexible to stressed--rigid transition is shown to be correlated to a
ductile-to-brittle transition, with a local minimum of the brittleness for
isostatic system. This fracture toughening arises from a reversible molecular
network, allowing optimal stress relaxation and crack blunting behaviors. This
opens the way to the discovery of high-performance materials, designed at the
molecular scale
Mesoscale texture of cement hydrates
Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron- microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials
Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate
Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8ââ€âCa/Siââ€â1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material
Tunable Porous Organic Crystals: Structural Scope and Adsorption Properties of Nanoporous Steroidal Ureas
Previous work has shown that certain steroidal bis-(N-phenyl)ureas, derived from cholic acid, form crystals in the P61 space group with unusually wide unidimensional pores. A key feature of the nanoporous steroidal urea (NPSU) structure is that groups at either end of the steroid are directed into the channels and may in principle be altered without disturbing the crystal packing. Herein we report an expanded study of this system, which increases the structural variety of NPSUs and also examines their inclusion properties. Nineteen new NPSU crystal structures are described, to add to the six which were previously reported. The materials show wide variations in channel size, shape, and chemical nature. Minimum pore diameters vary from âŒ0 up to 13.1 Ă
, while some of the interior surfaces are markedly corrugated. Several variants possess functional groups positioned in the channels with potential to interact with guest molecules. Inclusion studies were performed using a relatively accessible tris-(N-phenyl)urea. Solvent removal was possible without crystal degradation, and gas adsorption could be demonstrated. Organic molecules ranging from simple aromatics (e.g., aniline and chlorobenzene) to the much larger squalene (Mw = 411) could be adsorbed from the liquid state, while several dyes were taken up from solutions in ether. Some dyes gave dichroic complexes, implying alignment of the chromophores in the NPSU channels. Notably, these complexes were formed by direct adsorption rather than cocrystallization, emphasizing the unusually robust nature of these organic molecular hosts
A thermodynamic investigation of selenium confined in silicalite zeolite
In this paper, we study the practical feasibility of selenium adsorption in silicalite-1 zeolite by performing Grand Canonical Monte Carlo (GCMC) simulations on a simulation box including the porous matrix and its outer surface. This work aims at gaining insight on the stability of semi-conductor wires in microporous materials. The simulations at two different temperatures show two distinct behaviors: adsorption occurs inside the pores at 200degreesC while solely on the external surface at 650degreesC. This indicates that adsorption inside the pore network can only proceed below the pseudo-wetting transition temperature that lies between 200 and 650degreesC. The existence of such transition temperature is thus crucial if one aims to produce nanowires from microporous materials by adsorption from a gas phase
- âŠ