512 research outputs found

    Multiple components of Ca2+ channel facilitation in cerebellar granule cells:expression of facilitation during development in culture

    Get PDF
    The contribution of pharmacologically distinct Ca2+ channels to prepulse-induced facilitation was studied in mouse cerebellar granule cells. Ca2+ channel facilitation was measured as the percentage increase in the whole-cell current recorded during a test pulse before and after it was paired with a positive prepulse. The amount of facilitation was small in recordings made during the first few days in tissue culture but increased substantially after 1 week. L-type channels accounted for the largest proportion of facilitation in 1-week-old cells (60-70%), whereas N-type channels contributed very little (approximately 3%). The toxins omega-agatoxin IVa or omega-conotoxin MVIIC (after block of N-, L-, and P-type channels) each blocked a small percentage of facilitation (approximately 12 and 14%, respectively). Perfusion of cells with GTP-gamma-S enhanced the facilitation of N-type channels, whereas it inhibited of L-type channels. During development in vitro, the contribution of L-type channels to the whole-cell current decreased. Single-channel recordings showed the presence of 10 and 15 pS L-type Ca2+ channels in 1-d-old cells. After 1 week in culture, a approximately 25 pS L-type channel dominated recordings from cell-attached patches. Positive prepulses increased the activity of the 25 pS channel but not of the smaller conductance channels. The expression of Ca(2+) channel facilitation during development may contribute to changes in excitability that allow frequency-dependent Ca(2+) influx during the period of active synaptogenesi

    Phenomenological study of the atypical heavy flavor production observed at the Fermilab Tevatron

    Full text link
    We address known discrepancies between the heavy flavor properties of jets produced at the Tevatron collider and the prediction of conventional-QCD simulations. In this study, we entertain the possibility that these effects are real and due to new physics. We show that all anomalies can be simultaneously fitted by postulating the additional pair production of light bottom squarks with a 100% semileptonic branching fraction.Comment: 30 pages, 13 figures, 3 tables. Submitted to Phys. Rev.

    Non-neuronal, slow GABA signalling in the ventrobasal thalamus targets δ-subunit-containing GABAA receptors

    Get PDF
    The rodent ventrobasal (VB) thalamus contains a relatively uniform population of thalamocortical (TC) neurons that receive glutamatergic input from the vibrissae and the somatosensory cortex, and inhibitory input from the nucleus reticularis thalami (nRT). In this study we describe γ-aminobutyric acid (GABA)A receptor-dependent slow outward currents (SOCs) in TC neurons that are distinct from fast inhibitory postsynaptic currents (IPSCs) and tonic currents. SOCs occurred spontaneously or could be evoked by hypo-osmotic stimulus, and were not blocked by tetrodotoxin, removal of extracellular Ca2+ or bafilomycin A1, indicating a non-synaptic, non-vesicular GABA origin. SOCs were more common in TC neurons of the VB compared with the dorsal lateral geniculate nucleus, and were rarely observed in nRT neurons, whilst SOC frequency in the VB increased with age. Application of THIP, a selective agonist at δ-subunit-containing GABAA receptors, occluded SOCs, whereas the benzodiazepine site inverse agonist β-CCB had no effect, but did inhibit spontaneous and evoked IPSCs. In addition, the occurrence of SOCs was reduced in mice lacking the δ-subunit, and their kinetics were also altered. The anti-epileptic drug vigabatrin increased SOC frequency in a time-dependent manner, but this effect was not due to reversal of GABA transporters. Together, these data indicate that SOCs in TC neurons arise from astrocytic GABA release, and are mediated by δ-subunit-containing GABAA receptors. Furthermore, these findings suggest that the therapeutic action of vigabatrin may occur through the augmentation of this astrocyte–neuron interaction, and highlight the importance of glial cells in CNS (patho) physiology

    Novel, Fully Characterised Bovine Taste Bud Cells of Fungiform Papillae

    Get PDF
    Current understanding of functional characteristics and biochemical pathways in taste bud cells have been hindered due the lack of long-term cultured cells. To address this, we developed a holistic approach to fully characterise long term cultured bovine taste bud cells (BTBCs). Initially, cultured BTBCs were characterised using RT-PCR gene expression profiling, immunocytochemistry, flowcytometry and calcium imaging, that confirmed the cells were mature TBCs that express taste receptor genes, taste specific protein markers and capable of responding to taste stimuli, i.e., denatonium (2 mM) and quinine (462.30 μM). Gene expression analysis of forty-two genes implicated in taste transduction pathway (map04742) using custom-made RT-qPCR array revealed high and low expressed genes in BTBCs. Preliminary datamining and bioinformatics demonstrated that the bovine α-gustducin, gustatory G-protein, have higher sequence similarity to the human orthologue compared to rodents. Therefore, results from this work will replace animal experimentation and provide surrogate cell-based throughput system to study human taste transduction

    Lower limb deep vein thrombosis in COVID-19 patients admitted to intermediate care respiratory units

    Get PDF
    COVID-19 has been associated with an increased risk of thrombotic events; however, the reported incidence of deep vein thrombosis varies depending, at least in part, on the severity of the disease. Aim of this prospective, multicenter, observational study was to investigate the incidence of lower limb deep vein thrombosis as assessed by compression ultrasound in consecutive patients admitted to three pulmonary medicine wards designated to care for patients with COVID-19 related pneumonia, with or without respiratory failure but not requiring admission to an intensive care unit. Consecutive patients admitted between March 27 and May 6, 2020 were enrolled. Patients were excluded if they were less than 18-year-old or if compression ultrasound could not be performed for any reason. Patients were assessed at admission (t0) and after 7 days (t1). Major and non-major clinically relevant bleedings were recorded. Sixty-eight patients were enrolled. Two were excluded due to anatomical abnormalities that prevented compression ultrasound; sixty patients were retested at (t1). All patients were started on antithrombotic prophylaxis, unless therapeutic anticoagulation was required. Deep vein thrombosis as assessed by compression ultrasound was observed in 2 patients (3%); one of them was later deemed to represent a previous episode. No new episodes were detected at t1. One major and 2 non-major clinically relevant bleedings were observed. In the setting of patients with COVID-related pneumonia not requiring admission to an intensive care unit, the incidence of deep vein thrombosis is low and our data support not screening asymptomatic patients

    On the action of the anti-absence drug ethosuximide in the rat and cat thalamus

    Get PDF
    The action of ethosuximide (ETX) on Na+, K+, and Ca2+ currents and on tonic and burst-firing patterns was investigated in rat and cat thalamic neurons in vitro by using patch and sharp microelectrode recordings. In thalamocortical (TC) neurons of the rat dorsal lateral geniculate nucleus (LGN), ETX (0.75-1 mM) decreased the noninactivating Na+ current, INaP, by 60% but had no effect on the transient Na+ current. In TC neurons of the rat and cat LGN, the whole-cell transient outward current was not affected by ETX (up to 1 mM), but the sustained outward current was decreased by 39% at 20 mV in the presence of ETX (0.25-0.5 mM): this reduction was not observed in a low Ca2+ (0.5 mM) and high Mg2+ (8 mM) medium or in the presence of Ni2+ (1 mM) and Cd2+ (100 µm). In addition, ETX (up to 1 mM) had no effect on the low-threshold Ca2+ current, I T, of TC neurons of the rat ventrobasal (VB) thalamus and LGN and in neurons of the rat nucleus reticularis thalami nor on the high-threshold Ca2+ current in TC neurons of the rat LGN. Sharp microelectrode recordings in TC neurons of the rat and cat LGN and VB showed that ETX did not change the resting membrane potential but increased the apparent input resistance at potentials greater than -60 mV, resulting in an increase in tonic firing. In contrast, ETX decreased the number of action potentials in the burst evoked by a low-threshold Ca2+ potential. The frequency of the remaining action potentials in a burst also was decreased, whereas the latency of the first action potential was increased. Similar effects were observed on the burst firing evoked during intrinsic δ oscillations. These results indicate an action of ETX on / NaP and on the Ca2+-activated K+ current, which explains the decrease in burst firing and the increase in tonic firing, and, together with the lack of action on low- and high-threshold Ca2+ currents, the results cast doubts on the hypothesis that a reduction of / τ in thalamic neurons underlies the therapeutic action of this anti-absence medicine

    Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study

    Get PDF
    Background: Transfemoral amputation is a serious intervention that alters the locomotion pattern, leading to secondary disorders and reduced quality of life. The outcomes of current gait rehabilitation for TFAs seem to be highly dependent on factors such as the duration and intensity of the treatment and the age or etiology of the patient. Although the use of robotic assistance for prosthetic gait rehabilitation has been limited, robotic technologies have demonstrated positive rehabilitative effects for other mobility disorders and may thus offer a promising solution for the restoration of healthy gait in TFAs. This study therefore explored the feasibility of using a bilateral powered hip orthosis (APO) to train the gait of community-ambulating TFAs and the effects on their walking abilities. Methods: Seven participants (46–71 years old with different mobility levels) were included in the study and assigned to one of two groups (namely Symmetry and Speed groups) according to their prosthesis type, mobility level, and prior experience with the exoskeleton. Each participant engaged in a maximum of 12 sessions, divided into one Enrollment session, one Tuning session, two Assessment sessions (conducted before and after the training program), and eight Training sessions, each consisting of 20 minutes of robotically assisted overground walking combined with additional tasks. The two groups were assisted by different torque-phase profiles, aiming at improving symmetry for the Symmetry group and at maximizing the net power transferred by the APO for the Speed group. During the Assessment sessions, participants performed two 6-min walking tests (6mWTs), one with (Exo) and one without (NoExo) the exoskeleton, at either maximal (Symmetry group) or self-selected (Speed group) speed. Spatio-temporal gait parameters were recorded by commercial measurement equipment as well as by the APO sensors, and metabolic efficiency was estimated via the Cost of Transport (CoT). Additionally, kinetic and kinematic data were recorded before and after treatment in the NoExo condition. Results: The one-month training protocol was found to be a feasible strategy to train TFAs, as all participants smoothly completed the clinical protocol with no relevant mechanical failures of the APO. The walking performance of participants improved after the training. During the 6mWT in NoExo, participants in the Symmetry and Speed groups respectively walked 17.4% and 11.7% farther and increased walking speed by 13.7% and 17.9%, with improved temporal and spatial symmetry for the former group and decreased energetic expenditure for the latter. Gait analysis showed that ankle power, step width, and hip kinematics were modified towards healthy reference levels in both groups. In the Exo condition metabolic efficiency was reduced by 3% for the Symmetry group and more than 20% for the Speed group. Conclusions: This study presents the first pilot study to apply a wearable robotic orthosis (APO) to assist TFAs in an overground gait rehabilitation program. The proposed APO-assisted training program was demonstrated as a feasible strategy to train TFAs in a rehabilitation setting. Subjects improved their walking abilities, although further studies are required to evaluate the effectiveness of the APO compared to other gait interventions. Future protocols will include a lighter version of the APO along with optimized assistive strategies

    NT2 Derived Neuronal and Astrocytic Network Signalling

    Get PDF
    A major focus of stem cell research is the generation of neurons that may then be implanted to treat neurodegenerative diseases. However, a picture is emerging where astrocytes are partners to neurons in sustaining and modulating brain function. We therefore investigated the functional properties of NT2 derived astrocytes and neurons using electrophysiological and calcium imaging approaches. NT2 neurons (NT2Ns) expressed sodium dependent action potentials, as well as responses to depolarisation and the neurotransmitter glutamate. NT2Ns exhibited spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling. Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, NT2 astrocytes (NT2As) exhibited morphology and functional properties consistent with this glial cell type. NT2As responded to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. NT2As also generated propagating calcium waves that were gap junction and purinergic signalling dependent. Our results show that NT2 derived astrocytes exhibit appropriate functionality and that NT2N networks interact with NT2A networks in co-culture. These findings underline the utility of such cultures to investigate human brain cell type signalling under controlled conditions. Furthermore, since stem cell derived neuron function and survival is of great importance therapeutically, our findings suggest that the presence of complementary astrocytes may be valuable in supporting stem cell derived neuronal networks. Indeed, this also supports the intriguing possibility of selective therapeutic replacement of astrocytes in diseases where these cells are either lost or lose functionality

    Search for narrow resonances below the Upsilon mesons

    Full text link
    We have investigated the invariant mass spectrum of dimuons collected by the CDF experiment during the 1992-1995 run of the Fermilab Tevatron collider to improve the limit on the existence of narrow resonances set by the experiments at the SPEAR e+e- collider. In the mass range 6.3-9.0 GeV/c^2, we derive 90% upper credible limits to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the Y(1S) meson. In this mass range, the average limit varies from 1.7 to 0.5%. This limit is much worse at the mass of 7.2 GeV/c^2 due to an excess of 250+-61 events with a width consistent with the detector resolution.Comment: 20 pages, 9 figures. This version has some typos fixed in the text and bibliography. A reference was added in bibliography. Submitted to Phys. Rev. D With this last submission we provide the version accepted for publication in Phys.Rev.
    corecore