107 research outputs found

    Cognitive Effects of White Matter Pathology in Normal and Pathological Aging

    Get PDF
    We examined whether cerebrovascular white matter pathology is related to cognition as measured by the compound score of CERAD neuropsychological battery in cognitively normal older adults, patients with mild cognitive impairment, and patients with Alzheimer's disease (total n = 149), controlling for age and education. Trend-level effects of white matter pathology on cognition were only observed in patients with Alzheimer's disease (p = 0.062, eta(2) = 0.052), patients with severe frontal white matter pathology performed notably worse than those with milder pathology. This indicates that frontal cerebrovascular pathology may have an additive negative effect on cognition in Alzheimer's disease

    ASIC-E4: Interplay of Beta-Amyloid, Synaptic Density and Neuroinflammation in Cognitively Normal Volunteers With Three Levels of Genetic Risk for Late-Onset Alzheimer's Disease – Study Protocol and Baseline Characteristics

    Get PDF
    Background: Detailed characterization of early pathophysiological changes in preclinical Alzheimer's disease (AD) is necessary to enable development of correctly targeted and timed disease-modifying treatments. ASIC-E4 study (“Beta-Amyloid, Synaptic loss, Inflammation and Cognition in healthy APOE ε4 carriers”) combines state-of-the-art neuroimaging and fluid-based biomarker measurements to study the early interplay of three key pathological features of AD, i.e., beta-amyloid (Aβ) deposition, neuroinflammation and synaptic dysfunction and loss in cognitively normal volunteers with three different levels of genetic (APOE-related) risk for late-onset AD. Objective: Here, our objective is to describe the study design, used protocols and baseline demographics of the ASIC-E4 study. Methods/Design: ASIC-E4 is a prospective observational multimodal imaging study performed in Turku PET Centre in collaboration with University of Gothenburg. Cognitively normal 60–75-year-old-individuals with known APOE ε4/ε4 genotype were recruited via local Auria Biobank (Turku, Finland). Recruitment of the project has been completed in July 2020 and 63 individuals were enrolled to three study groups (Group 1: APOE ε4/ε4, N = 19; Group 2: APOE ε4/ε3, N = 22; Group 3: APOE ε3/ε3, N = 22). At baseline, all participants will undergo positron emission tomography imaging with tracers targeted against Aβ deposition (11C-PIB), activated glia (11C-PK11195) and synaptic vesicle glycoprotein 2A (11C-UCB-J), two brain magnetic resonance imaging scans, and extensive cognitive testing. In addition, blood samples are collected for various laboratory measurements and blood biomarker analysis and cerebrospinal fluid samples are collected from a subset of participants based on additional voluntary informed consent. To evaluate the predictive value of the early neuroimaging findings, neuropsychological evaluation and blood biomarker measurements will be repeated after a 4-year follow-up period. Discussion: Results of the ASIC-E4 project will bridge the gap related to limited knowledge of the synaptic and inflammatory changes and their association with each other and Aβ in “at-risk” individuals. Thorough in vivo characterization of the biomarker profiles in this population will produce valuable information for diagnostic purposes and future drug development, where the field has already started to look beyond Aβ

    MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes - a feasibility study

    Get PDF
    ConclusionsTexture features which measure randomness, heterogeneity or smoothness and homogeneity may either directly or indirectly reflect underlying growth patterns of breast tumours. TA and volumetric analysis may provide a way to evaluate the biologic aggressiveness of breast tumours and provide aid in decisions regarding therapeutic efficacy.</p

    Pancreatic metabolism, blood flow, and β-cell function in obese humans.

    Get PDF
    Context: Glucolipotoxicity is believed to induce pancreatic &beta;-cell dysfunction in obesity. Previously, it has not been possible to study pancreatic metabolism and blood flow in humans. Objective: The objective of the study was to investigate whether pancreatic metabolism and blood flow are altered in obesity using positron emission tomography (PET). In the preclinical part, the method was validated in animals. Design: This was a cross-sectional study. Setting: The study was conducted in a clinical research center. Participants: Human studies consisted of 52 morbidly obese and 25 healthy age-matched control subjects. Validation experiments were done with rodents and pigs. Interventions: PET and magnetic resonance imaging studies using a glucose analog ([18F]fluoro-2-deoxy-d-glucose), a palmitate analog [14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid], and radiowater ([15O]H2O) were performed. In animals, a comparison between ex vivo and in vivo data was performed. Main Outcome Measures: Pancreatic glucose/fatty acid (FA) uptake, fat accumulation, and blood flow parameters of &beta;-cell function were measured. Results: PET proved to be a feasible method to measure pancreatic metabolism. Compared with healthy participants, obese participants had elevated pancreatic FA uptake (P &lt; .0001), more fat accumulation (P = .0001), lowered glucose uptake both during fasting and euglycemic hyperinsulinemia, and blunted blood flow (P &lt; .01) in the pancreas. Blood flow, FA uptake, and fat accumulation were negatively associated with multiple markers of &beta;-cell function. Conclusions: Obesity leads to changes in pancreatic energy metabolism with a substrate shift from glucose to FAs. In morbidly obese humans, impaired pancreatic blood flow may contribute to &beta;-cell dysfunction and in the pathogenesis of type 2 diabetes. &nbsp;</div

    APOE ε4 gene dose effect on imaging and blood biomarkers of neuroinflammation and beta-amyloid in cognitively unimpaired elderly

    Get PDF
    BACKGROUND: Neuroinflammation, characterized by increased reactivity of microglia and astrocytes in the brain, is known to be present at various stages of the Alzheimer's disease (AD) continuum. However, its presence and relationship with amyloid pathology in cognitively normal at-risk individuals is less clear. Here, we used positron emission tomography (PET) and blood biomarker measurements to examine differences in neuroinflammation and beta-amyloid (Aβ) and their association in cognitively unimpaired homozygotes, heterozygotes, or non-carriers of the APOE ε4 allele, the strongest genetic risk for sporadic AD. METHODS: Sixty 60-75-year-old APOE ε4 homozygotes (n = 19), heterozygotes (n = 21), and non-carriers (n = 20) were recruited in collaboration with the local Auria biobank. The participants underwent 11C-PK11195 PET (targeting 18-kDa translocator protein, TSPO), 11C-PiB PET (targeting Aβ), brain MRI, and neuropsychological testing including a preclinical cognitive composite (APCC). 11C-PK11195 distribution volume ratios and 11C-PiB standardized uptake value ratios (SUVRs) were calculated for regions typical for early Aβ accumulation in AD. Blood samples were drawn for measuring plasma glial fibrillary acidic protein (GFAP) and plasma Aβ1-42/1.40. RESULTS: In our cognitively unimpaired sample, cortical 11C-PiB-binding increased according to APOE ε4 gene dose (median composite SUVR 1.47 (range 1.38-1.66) in non-carriers, 1.55 (1.43-2.02) in heterozygotes, and 2.13 (1.61-2.83) in homozygotes, P = 0.002). In contrast, cortical composite 11C-PK11195-binding did not differ between the APOE ε4 gene doses (P = 0.27) or between Aβ-positive and Aβ-negative individuals (P = 0.81) and associated with higher Aβ burden only in APOE ε4 homozygotes (Rho = 0.47, P = 0.043). Plasma GFAP concentration correlated with cortical 11C-PiB (Rho = 0.35, P = 0.040), but not 11C-PK11195-binding (Rho = 0.13, P = 0.47) in Aβ-positive individuals. In the total cognitively unimpaired population, both higher composite 11C-PK11195-binding and plasma GFAP were associated with lower hippocampal volume, whereas elevated 11C-PiB-binding was associated with lower APCC scores. CONCLUSIONS: Only Aβ burden measured by PET, but not markers of neuroinflammation, differed among cognitively unimpaired elderly with different APOE ε4 gene dose. However, APOE ε4 gene dose seemed to modulate the association between neuroinflammation and Aβ

    MR signal-fat-fraction analysis and T2*weighted imaging measure BAT reliably on humans without cold exposure

    Get PDF
    Objective. Brown adipose tissue (BAT) is compositionally distinct from white adipose tissue (WAT) in terms of triglyceride and water content. In adult humans, the most significant BAT depot is localized in the supraclavicular area. Our aim is to differentiate brown adipose tissue from white adipose tissue using fat T2* relaxation time mapping and signal-fat-fraction (SFF) analysis based on a commercially available modified 2-point-Dixon (mDixon) water fat separation method. We hypothesize that magnetic resonance (MR) imaging can reliably measure BAT regardless of the cold-induced metabolic activation, with BAT having a significantly higher water and iron content compared to WAT.Material and methods. The supraclavicular area of 13 volunteers was studied on 3 T PET-MRI scanner using T2* relaxation time and SFF mapping both during cold exposure and at ambient temperature; and F-18-FDG PET during cold exposure. Volumes of interest (VOIs) were defined semiautomatically in the supraclavicular fat depot, subcutaneous WAT and muscle.Results. The supraclavicular fat depot (assumed to contain BAT) had a significantly lower SFF and fat T2* relaxation time compared to subcutaneous WAT. Cold exposure did not significantly affect MR-based measurements. SFF and T2* values measured during cold exposure and at ambient temperature correlated inversely with the glucose uptake measured by 18F-FDG PET.Conclusions. Human BAT can be reliably and safely assessed using MRI without cold activation and PET-related radiation exposure. (C) 2017 Elsevier Inc. All rights reserved

    Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?

    Get PDF
    BACKGROUND: Because training of the lumbar muscles is a commonly recommended intervention in low back pain (LBP), it is important to clarify whether lumbar muscle atrophy is related to LBP. Fat infiltration seems to be a late stage of muscular degeneration, and can be measured in a non-invasive manner using magnetic resonance imaging. The purpose of this study was to investigate if fat infiltration in the lumbar multifidus muscles (LMM) is associated with LBP in adults and adolescents. METHODS: In total, 412 adults (40-year-olds) and 442 adolescents (13-year-olds) from the general Danish population participated in this cross-sectional cohort study. People with LBP were identified through questionnaires. Using MRI, fat infiltration of the LMM was visually graded as none, slight or severe. Odds ratios were calculated for both age groups, taking into account sex, body composition and leisure time physical activity for both groups, and physical workload (in adults only) or daily bicycling (in adolescents only). RESULTS: Fat infiltration was noted in 81% of the adults but only 14% of the adolescents. In the adults, severe fat infiltration was strongly associated with ever having had LBP (OR 9.2; 95% CI 2.0–43.2), and with having LBP in the past year (OR 4.1; 1.5–11.2), but there was no such association in adolescents. None of the investigated moderating factors had an obvious effect on the OR in the adults. CONCLUSION: Fat infiltration in the LMM is strongly associated with LBP in adults only. However, it will be necessary to quantify these measurements objectively and to investigate the direction of this link longitudinally in order to determine if the abnormal muscle is the cause of LBP or vice versa

    Microglial activation, white matter tract damage, and disability in MS

    Get PDF
    ObjectiveTo investigate the relationship of in vivo microglial activation to clinical and MRI parameters in MS.MethodsPatients with secondary progressive MS (n = 10) or relapsing-remitting MS (n = 10) and age-matched healthy controls (n = 17) were studied. Microglial activation was measured using PET and radioligand [C-11](R)-PK11195. Clinical assessment and structural and quantitative MRI including diffusion tensor imaging (DTI) were performed for comparison.Results[C-11](R)-PK11195 binding was significantly higher in the normal-appearing white matter (NAWM) of patients with secondary progressive vs relapsing MS and healthy controls, in the thalami of patients with secondary progressive MS vs controls, and in the perilesional area among the progressive compared with relapsing patients. Higher binding in the NAWM was associated with higher clinical disability and reduced white matter (WM) structural integrity, as shown by lower fractional anisotropy, higher mean diffusivity, and increased WM lesion load. Increasing age contributed to higher microglial activation in the NAWM among patients with MS but not in healthy controls.ConclusionsPET can be used to quantitate microglial activation, which associates with MS progression. This study demonstrates that increased microglial activity in the NAWM correlates closely with impaired WM structural integrity and thus offers one rational pathologic correlate to diffusion tensor imaging (DTI) parameters

    Finnish flow diverter study: 8 years of experience in the treatment of acutely ruptured intracranial aneurysms

    Get PDF
    Background: Flow diversion of acutely ruptured intracranial aneurysms (IAs) is controversial due to high treatment-related complication rates and a lack of supporting evidence. We present clinical and radiological results of the largest series to date.Methods: This is a nationwide retrospective study of acutely ruptured IAs treated with flow diverters (FDs). The primary outcome was the modified Rankin Scale (mRS) score at the last available follow-up time. Secondary outcomes were treatment-related complications and the aneurysm occlusion rate.Results: 110 patients (64 females; mean age 55.7 years; range 12-82 years) with acutely ruptured IAs were treated with FDs between 2012 and 2020 in five centers. 70 acutely ruptured IAs (64%) were located in anterior circulation, and 47 acutely ruptured IAs (43%) were blister-like. A favorable functional outcome (mRS 0-2) was seen in 73% of patients (74/102). Treatment-related complications were seen in 45% of patients (n=49). Rebleeding was observed in 3 patients (3%). The data from radiological follow-ups were available for 80% of patients (n=88), and complete occlusion was seen in 90% of aneurysms (79/88). The data from clinical follow-ups were available for 93% of patients (n=102). The overall mortality rate was 18% (18/102).Conclusions: FD treatment yields high occlusion for acutely ruptured IAs but is associated with a high risk of complications. Considering the high mortality rate of aneurysmal subarachnoid hemorrhage, the prevention of rebleeding is crucial. Thus, FD treatment may be justified as a last resort option.</p
    • …
    corecore