155 research outputs found

    A Small Molecule that Induces Intrinsic Pathway Apoptosis with Unparalleled Speed

    Get PDF
    Apoptosis is generally believed to be a process thatrequires several hours, in contrast to non-programmed forms of cell death that can occur in minutes. Our findings challenge the time-consuming nature of apoptosis as we describe the discovery and characterization of a small molecule, named Raptinal, which initiates intrinsic pathway caspase-dependent apoptosis within minutes in multiple cell lines. Comparison to a mechanistically diverse panel of apoptotic stimuli reveals that Raptinal-induced apoptosis proceeds with unparalleled speed. The rapid phenotype enabled identification of the criticalroles of mitochondrial voltage-dependent anion channel function, mitochondrial membrane potential/coupled respiration, and mitochondrial complex I, III, and IV function for apoptosis induction. Use of Raptinal in whole organisms demonstrates its utility for studying apoptosis invivo for a variety of applications. Overall, rapid inducers of apoptosis are powerful tools that will be used in a variety of settings to generate further insight into the apoptotic machinery. Palchaudhuri etal. describe the discovery of a small molecule called "Raptinal" that induces unusually rapid apoptotic cell death via the intrinsic pathway. Their work describes the utility of Raptinal as a tool for apoptosis induction relative to other available small molecules

    Genetic and Proteomic Approaches to Identify Cancer Drug Targets

    Get PDF
    While target-based small-molecule discovery has taken centre-stage in the pharmaceutical industry, there are many cancer-promoting proteins not easily addressed with a traditional target-based screening approach. In order to address this problem, as well as to identify modulators of biological states in the absence of knowing the protein target of the state switch, alternative phenotypic screening approaches, such as gene expression-based and high-content imaging, have been developed. With this renewed interest in phenotypic screening, however, comes the challenge of identifying the binding protein target(s) of small-molecule hits. Emerging technologies have the potential to improve the process of target identification. In this review, we discuss the application of genomic (gene expression-based), genetic (short hairpin RNA and open reading frame screening), and proteomic approaches to protein target identification

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd

    Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging.

    Get PDF
    An emerging paradigm in immunology suggests that metabolic reprogramming and immune cell activation and functions are intricately linked. Viral infections, such as HIV infection, as well as cancer force immune cells to undergo major metabolic challenges. Cells must divert energy resources in order to mount an effective immune response. However, the fact that immune cells adopt specific metabolic programs to provide host defense against intracellular pathogens and how this metabolic shift impacts immune cell functions and the natural course of diseases have only recently been appreciated. A clearer insight into how these processes are inter-related will affect our understanding of several fundamental aspects of HIV persistence. Even in patients with long-term use of anti-retroviral therapies, HIV infection persists and continues to cause chronic immune activation and inflammation, ongoing and cumulative damage to multiple organs systems, and a reduction in life expectancy. HIV-associated fundamental changes to the metabolic machinery of the immune system can promote a state of "inflammaging", a chronic, low-grade inflammation with specific immune changes that characterize aging, and can also contribute to the persistence of HIV in its reservoirs. In this commentary, we will bring into focus evolving concepts on how HIV modulates the metabolic machinery of immune cells in order to persist in reservoirs and how metabolic reprogramming facilitates a chronic state of inflammation that underlies the development of age-related comorbidities. We will discuss how immunometabolism is facilitating the changing paradigms in HIV cure research and outline the novel therapeutic opportunities for preventing inflammaging and premature development of age-related conditions in HIV + individuals

    Thermodynamics of liquid noble-metal alloys through a pseudopotential approach

    No full text
    On the basis of the Gibbs-Bogoliubov inequality and the Percus-Yevick hard-sphere model as a reference system, a thermodynamic perturbation method has been applied with use of the Borchi-DeGennaro pseudopotential. By applying a variation method the best hard-core diameters have been found which correspond to minimum free energy. With this procedure the thermodynamic properties such as entropy and heat of mixing have been computed. The computed excess entropy compares favorably in the case of these liquid alloys while the agreement with experiment is poor in the case of heats of mixing. The present results, even with the overlap contribution taken into consideration, still show the same trend as has been found by Umar et al. [J. Phys. F 4, 1691 (1974)]. This may be due to the sensitivity of the heats of mixing, as pointed out already by them, with the potential parameters, overlap correction, and the dielectric function

    The clock is ticking: the impact of ageing on T cell metabolism

    Get PDF
    It is now clear that access to specific metabolic programmes controls the survival and function of various immune cell populations, including T cells. Efficient naïve and memory T cell homoeostasis requires the use of specific metabolic pathways and differentiation requires rapid and dramatic metabolic remodelling. While we are beginning to appreciate the crucial role of metabolic programming during normal T cell physiology, many of the potential impacts of ageing on metabolic homoeostasis and remodelling in T cells remain unexplored. This review will outline our current understanding of T cell metabolism and explore age-related metabolic changes that are postulated or have been demonstrated to impact T cell function

    Temperature dependence of the thermodynamic and transport properties of liquid noble metals

    No full text
    The variational method associated with the Gibbs-Bogoliubov inequality in thermodynamic perturbation method allows the determination of the thermodynamic properties as well as the transport coefficients. The Percus-Yevick (PY) hard sphere system has been chosen as a reference system and the hard sphere diameter has been obtained through a variational technique by minimising the free energy with respect to the diameter. Thermodynamic properties, namely entropy and heat capacity and transport properties like viscosity and self-diffusion coefficient, have been calculated as a function of temperature with this diameter
    corecore