26,761 research outputs found

    Image Properties of Embedded Lenses

    Full text link
    We give analytic expressions for image properties of objects seen around point mass lenses embedded in a flat Λ\LambdaCDM universe. An embedded lens in an otherwise homogeneous universe offers a more realistic representation of the lens's gravity field and its associated deflection properties than does the conventional linear superposition theory. Embedding reduces the range of the gravitational force acting on passing light beams thus altering all quantities such as deflection angles, amplifications, shears and Einstein ring sizes. Embedding also exhibits the explicit effect of the cosmological constant on these same lensing quantities. In this paper we present these new results and demonstrate how they can be used. The effects of embedding on image properties, although small i.e., usually less than a fraction of a percent, have a more pronounced effect on image distortions in weak lensing where the effects can be larger than 10%. Embedding also introduces a negative surface mass density for both weak and strong lensing, a quantity altogether absent in conventional Schwarzschild lensing. In strong lensing we find only one additional quantity, the potential part of the time delay, which differs from conventional lensing by as much as 4%, in agreement with our previous numerical estimates.Comment: 17 pages, 6 figure

    Observation of a cyclotron harmonic spike in microwave-induced resistances in ultraclean GaAs/AlGaAs quantum wells

    Full text link
    We report the observation of a colossal, narrow resistance peak that arises in ultraclean (mobility 3X10^7cm^2/Vs) GaAs/AlGaAs quantum wells (QWs) under millimeterwave irradiation and a weak magnetic field. Such a spike is superposed on the 2nd harmonic microwave-induced resistance oscillations (MIRO) but having an amplitude > 300% of the MIRO, and a typical FWHM ~50 mK, comparable with the Landau level width. Systematic studies show a correlation between the spike and a pronounced negative magnetoresistance in these QWs, suggesting a mechanism based on the interplay of strong scatterers and smooth disorder. Alternatively, the spike may be interpreted as a manifestation of quantum interference between the quadrupole resonance and the higher-order cyclotron transition in well-separated Landau levels.Comment: 4pages, 4figure

    The equation of state for two-dimensional hard-sphere gases: Hard-sphere gases as ideal gases with multi-core boundaries

    Full text link
    The equation of state for a two-dimensional hard-sphere gas is difficult to calculate by usual methods. In this paper we develop an approach for calculating the equation of state of hard-sphere gases, both for two- and three-dimensional cases. By regarding a hard-sphere gas as an ideal gas confined in a container with a multi-core (excluded sphere) boundary, we treat the hard-sphere interaction in an interacting gas as the boundary effect on an ideal quantum gas; this enables us to treat an interacting gas as an ideal one. We calculate the equation of state for a three-dimensional hard-sphere gas with spin jj, and compare it with the results obtained by other methods. By this approach the equation of state for a two-dimensional hard-sphere gas can be calculated directly.Comment: 9 pages, 1 figur

    Statistical Entropy of Four-Dimensional Extremal Black Holes

    Get PDF
    String theory is used to count microstates of four-dimensional extremal black holes in compactifications with N=4N=4 and N=8N=8 supersymmetry. The result agrees for large charges with the Bekenstein-Hawking entropy.Comment: 4 pages, harvma

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2∗D_2^*, D0′D'_0, and D1′D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure

    Two spatially separated phases in semiconducting Rb0.8_{0.8}Fe1.5_{1.5}S2_2

    Full text link
    We report neutron scattering and transport measurements on semiconducting Rb0.8_{0.8}Fe1.5_{1.5}S2_2, a compound isostructural and isoelectronic to the well-studied A0.8A_{0.8}Fey_{y}Se2(A=_2 (A= K, Rb, Cs, Tl/K) superconducting systems. Both resistivity and DC susceptibility measurements reveal a magnetic phase transition at T=275T=275 K. Neutron diffraction studies show that the 275 K transition originates from a phase with rhombic iron vacancy order which exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In addition, interdigitated mesoscopically with the rhombic phase is an ubiquitous phase with 5×5\sqrt{5}\times\sqrt{5} iron vacancy order. This phase has a magnetic transition at TN=425T_N=425 K and an iron vacancy order-disorder transition at TS=600T_{S}=600 K. These two different structural phases are closely similar to those observed in the isomorphous Se materials. Based on the close similarities of the in-plane antiferromagnetic structures, moments sizes, and ordering temperatures in semiconducting Rb0.8_{0.8}Fe1.5_{1.5}S2_2 and K0.81_{0.81}Fe1.58_{1.58}Se2_2, we argue that the in-plane antiferromagnetic order arises from strong coupling between local moments. Superconductivity, previously observed in the A0.8A_{0.8}Fey_{y}Se2−z_{2-z}Sz_z system, is absent in Rb0.8_{0.8}Fe1.5_{1.5}S2_2, which has a semiconducting ground state. The implied relationship between stripe/block antiferromagnetism and superconductivity in these materials as well as a strategy for further investigation is discussed in this paper.Comment: 7 pages, 5 figure

    Where is the spectral weight in magnetic neutron scattering in the cuprates?

    Full text link
    We present estimates in the Hubbard and Heisenberg models for the spectral weight in magnetic neutron scattering experiments on the cuprates. With the aid of spin-wave theory and the time dependent Gutzwiller approximation we discuss how the spectral weight is distributed among the different channels and between high and low energies. In addition to the well known total moment sum rule we discuss sum rules for each component of the dynamical structure factor tensor which are peculiar for spin 1/2 systems. The various factors that reduce the spectral weight at the relevant energies are singled out and analyzed like: shielding factors, weight at electronic energies, multimagnon process etc. Although about 10% ~ 15% of the naively expected weight is detected in experiments after consideration of these factors the missing weight is within the experimental uncertainties. A large fraction of the spectral weight is hard to detect with present experimental conditions.Comment: 16 pages, 13 figures, submitted to PR
    • …
    corecore