108 research outputs found

    Non-Invasive Diagnostic Imaging of Peripheral Arterial Disease

    Get PDF
    CTA could be improved by reducing the impact of vessel wall calcifications on image interpretation. With a 16-slice or recently introduced 64-slice MDCT scanner a higher resolution can be obtained compared to a 4-slice MDCT. This may result in less blooming of calcifications, which will improve image interpretation. However, the potential for radiation dose reduction with the 16- and 64-slice MDCT scanners, due to the differences in gantry geometry compared to a 4-slice MDCT, is lost when we obtain higher resolution images using thinner slices and lower pitch. Subtraction CTA is another approach to minimize the burden of vessel wall calcifications on image interpretation (55). However, this technique requires a high level of patient collaboration, is not feasible in 20% of the patients in spite of good collaboration, generates two times more images, and increases the radiation exposure. The possible solution for the calcification problem may be found in post-processing software or more likely in hardware improvements. A complete different solution lies not in the technique, but in selecting patients for whom CTA is contra-indicated due to extensive vessel wall calcifications. In this thesis we performed an initial evaluation of clinical predictors of vessel wall calcifications on CTA. A future study is needed to develop and validate a clinical prediction rule for this problem. The results from our study can help design such a future study and restrict the data collection to the most relevant variables. In summary, CTA is the optimal non-invasive imaging test for the initial evaluation of patients with PAD. In elderly patients, patients with diabetes mellitus, and those with cardiac disease a CTA is contra-indicated due to decreased clinical utility. In these patients a MRA should be considered as initial imaging test. With the current knowledge of the DIPAD trial it is not useful to perform another study on the costs and effects of non-invasive imaging test for PAD

    Simian varicella virus infects enteric neurons and α4β7 integrin-expressing gut-tropic T-cells in nonhuman primates

    Get PDF
    The pathogenesis of enteric zoster, a rare debilitating complication of reactivation of latent varicella-zoster virus (VZV) in the enteric nervous system (ENS), is largely unknown. Infection of monkeys with the closely related Varicellovirus simian varicella virus (SVV) mimics VZV disease in humans. In this study, we determined the applicability of the SVV nonhuman primate model to study Varicellovirus infection of the ENS. We confirmed VZV infection of the gut in latently infected adults and demonstrated th

    Species differences in the pattern of eicosanoids produced by inflamed and non-inflamed tissue

    Get PDF
    The synthesis of14C labelled arachidonic acid metabolites was measured in colonic tissues obtained from mice, rats, guinea pigs, rabbits, piglets and in colonic biopsies from humans during colonoscopy. The main eicosanoids formed after stimulation with calcium ionophore A23187 were: in humans, 15-hydroxy-eicosatetraenoic acid (15-HETE); in mice, 12-HETE; in rats, 12-HETE, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and 6-keto-prostaglandine F1α (6kPGF1α); in guinea pigs, PGD2; in rabbits, 6kPGF1α, PGE2 and 15-HETE; and in pigs PGE2 and 12-HETE. In inflamed 15-HETE production was increased in man, HHT and 12-HETE production in rats and overall eicosanoid production in mice

    High renin and prorenin in plasma and pleural exudate of a patient with the ovarian hyperstimulation syndrome

    Get PDF
    We present the case of a 35-year-old woman with a severe ovarian hyperstimulation syndrome (OHSS) as a complication of ovulation induction for primary infertility. The clinical picture showed massively enlarged ovaries, pleural effusion and haemoconcentration. She needed a thoracentesis for evacuation of the large pleural effusion. High levels of renin and prorenin were observed in plasma and pleural exudate

    B-cell dysregulation in Crohn's disease is partially restored with infliximab therapy

    Get PDF
    Background: B-cell depletion can improve a variety of chronic inflammatory diseases, but does not appear beneficial for patients with Crohn's disease. Objective: To elucidate the involvement of B cells in Crohn's disease, we here performed an 'in depth' analysis of intestinal and blood B-cells in this chronic inflammatory disease. Methods: Patients with Crohn's disease were recruited to study B-cell infiltrates in intestinal biopsies (n = 5), serum immunoglobulin levels and the phenotype and molecular characteristics of blood B-cell subsets (n = 21). The effects of infliximab treatment were studied in 9 patients. Results: Granulomatous tissue showed infiltrates of B lymphocytes rather than Ig-secreting plasma cells. Circulating transitional B cells and CD21low B cells were elevated. IgM memory B cells were reduced and natural effector cells showed decreased replication histories and somatic hypermutation (SHM) levels. In contrast, IgG and IgA memory B cells were normally present and their Ig gene transcripts carried increased SHM levels. The numbers of transitional and natural effector cells were normal in patients who responded clinically well to infliximab. Conclusions: B cells in patients with Crohn's disease showed signs of chronic stimulation with localization to granulomatous tissue and increased molecular maturation of IgA and IgG. Therapy with TNFα-blockers restored the defect in IgM memory B-cell generation and normalized transitional B-cell levels, making these subsets candidate markers for treatment monitoring. Together, these results suggest a chronic, aberrant B-cell response in patients with Crohn's disease, which could be targeted with new therapeutics that specifically regulate B-cell function

    Local CD4 and CD8 T-Cell Reactivity to HSV-1 Antigens Documents Broad Viral Protein Expression and Immune Competence in Latently Infected Human Trigeminal Ganglia

    Get PDF
    Herpes simplex virus type 1 (HSV-1) infection results in lifelong chronic infection of trigeminal ganglion (TG) neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1-infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates

    T-Cell Tropism of Simian Varicella Virus during Primary Infection

    Get PDF
    Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, S

    Varicella zoster virus glycoprotein C increases chemokine-mediated leukocyte migration

    Get PDF
    Varicella zoster virus (VZV) is a highly prevalent human pathogen that establishes latency in neurons of the peripheral nervous system. Primary infection causes varicella whereas reactivation results in zoster, which is often followed by chronic pain in adults. Following infection of epithelial cells in the respiratory tract, VZV spreads within the host by hijacking leukocytes, including T cells, in the tonsils and other regional lymph nodes, and modifying their activity. In spite of its importance in pathogenesis, the mechanism of dissemination remains poorly understood. Here we addressed the influence of VZV on leukocyte migration and found that the purified recombinant soluble ectodomain of VZV glycoprotein C (rSgC) binds chemokines with high affinity. Functional experiments show that VZV rSgC potentiates chemokine activity, enhancing the migration of monocyte and T cell lines and, most importantly, human tonsillar leukocytes at low chemokine concentrations. Binding and potentiation of chemokine activity occurs through the C-terminal part of gC ectodomain, containing predicted immunoglobulin-like domains. The mechanism of action of VZV rSgC requires interaction with the chemokine and signalling through the chemokine receptor. Finally, we show that VZV viral particles enhance chemokine-dependent T cell migration and that gC is partially required for this activity. We propose that VZV gC activity facilitates the recruitment and subsequent infection of leukocytes and thereby enhances VZ
    corecore