162 research outputs found

    Alloying of Sn in the surface layer of Ag(111)

    Full text link

    Periodic corner holes on the Si(111)-7x7 surface can trap silver atoms

    Get PDF
    Advancement in nanotechnology to a large extent depends on the ability to manipulate materials at the atomistic level, including positioning single atoms on the active sites of the surfaces of interest, promoting strong chemical bonding. Here, we report a long-time confinement of a single Ag atom inside a corner hole (CH) of the technologically relevant Si(111)-7x7surface, which has comparable size as a fullerene C₆₀ molecule with a single dangling bond at the bottom center. Experiments reveal that a set of 17 Ag atoms stays entrapped in the CH for the entire duration of experiment, 4 days and 7 hours. Warming up the surface to about 150 °C degrees forces the Ag atoms out of the CH within a few minutes. The processes of entrapment and diffusion are temperature dependent. Theoretical calculations based on density functional theory support the experimental results confirming the highest adsorption energy at the CH for the Ag atom, and suggest that other elements such as Li, Na, Cu, Au, F and I may display similar behavior. The capability of atomic manipulation at room temperature makes this effect particularly attractive for building single atom devices and possibly developing new engineering and nano-manufacturing methods

    Broken symmetry induced band splitting in the Ag

    Full text link

    Structure-Function Analysis of Invasion Plasmid Antigen C (IpaC) from Shigella flexneri

    Get PDF
    Shigella flexneri causes a self-limiting gastroenteritis in humans, characterized by severe localized inflammation and ulceration of the colonic mucosa. Shigellosis most often targets young children in underdeveloped countries. Invasion plasmid antigen C (IpaC) has been identified as the primary effector protein for Shigella invasion of epithelial cells. Although an initial model of IpaC function has been developed, no detailed structural information is available that could assist in a better understanding of the molecular basis for its interactions with the host cytoskeleton and phospholipid membrane. We have therefore initiated structural studies of IpaC, IpaC I′, (residues 101–363 deleted), and IpaC ΔH (residues 63–170 deleted). The secondary and tertiary structure of the protein was examined as a function of temperature, employing circular dichroism and high resolution derivative absorbance techniques. ANS (8-anilino-1-napthalene sulfonic acid) was used to probe the exposure of the hydrophobic surfaces under different conditions. The interaction of IpaC and these mutants with a liposome model (liposomes with entrapped fluorescein) was also examined. Domain III (residues 261–363) was studied using linker-scanning mutagenesis. It was shown that domain III contains periodic, sequence-dependent activity, suggesting helical structure in this section of the protein. In addition to these structural studies, investigation into the actin nucleation properties of IpaC was conducted, and actin nucleation by IpaC and some of the mutants was exhibited. Structure-function relationships of IpaC are discussed

    Synaptic processes and immune-related pathways implicated in Tourette syndrome

    Get PDF
    Tourette syndrome (TS) is a neuropsychiatric disorder of complex genetic architecture involving multiple interacting genes. Here, we sought to elucidate the pathways that underlie the neurobiology of the disorder through genome-wide analysis. We analyzed genome-wide genotypic data of 3581 individuals with TS and 7682 ancestry-matched controls and investigated associations of TS with sets of genes that are expressed in particular cell types and operate in specific neuronal and glial functions. We employed a self-contained, set-based association method (SBA) as well as a competitive gene set method (MAGMA) using individual-level genotype data to perform a comprehensive investigation of the biological background of TS. Our SBA analysis identified three significant gene sets after Bonferroni correction, implicating ligand-gated ion channel signaling, lymphocytic, and cell adhesion and transsynaptic signaling processes. MAGMA analysis further supported the involvement of the cell adhesion and trans-synaptic signaling gene set. The lymphocytic gene set was driven by variants in FLT3, raising an intriguing hypothesis for the involvement of a neuroinflammatory element in TS pathogenesis. The indications of involvement of ligand-gated ion channel signaling reinforce the role of GABA in TS, while the association of cell adhesion and trans-synaptic signaling gene set provides additional support for the role of adhesion molecules in neuropsychiatric disorders. This study reinforces previous findings but also provides new insights into the neurobiology of TS

    Evaluation of the cobas Cdiff Test for Detection of Toxigenic Clostridium difficile in Stool Samples

    Get PDF
    Nucleic acid amplification tests (NAATs) are reliable tools for the detection of toxigenic Clostridium difficile from unformed (liquid or soft) stool samples. The objective of this study was to evaluate performance of the cobas Cdiff test on the cobas 4800 system using prospectively collected stool specimens from patients suspected of having C. difficile infection (CDI). The performance of the cobas Cdiff test was compared to the results of combined direct and broth-enriched toxigenic culture methods in a large, multicenter clinical trial. Additional discrepancy analysis was performed by using the Xpert C. difficile Epi test. Sample storage was evaluated by using contrived and fresh samples before and after storage at -20°C. Testing was performed on samples from 683 subjects (306 males and 377 females); 113 (16.5%) of 683 subjects were positive for toxigenic C. difficile by direct toxigenic culture, and 141 of 682 subjects were positive by using the combined direct and enriched toxigenic culture method (reference method), for a prevalence rate of 20.7%. The sensitivity and specificity of the cobas Cdiff test compared to the combined direct and enriched culture method were 92.9% (131/141; 95% confidence interval [CI], 87.4% to 96.1%) and 98.7% (534/541; 95% CI, 97.4% to 99.4%), respectively. Discrepancy analysis using results for retested samples from a second NAAT (Xpert C. difficile/Epi test; Cepheid, Sunnyvale, CA) found no false-negative and 4 false-positive cobas Cdiff test results. There was no difference in positive and negative results in comparisons of fresh and stored samples. These results support the use of the cobas Cdiff test as a robust aid in the diagnosis of CDI

    Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome

    Get PDF
    Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS

    Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector

    Get PDF
    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.Comment: accepted by PR
    • …
    corecore