1,417 research outputs found
Entwined Paths, Difference Equations and the Dirac Equation
Entwined space-time paths are bound pairs of trajectories which are traversed
in opposite directions with respect to macroscopic time. In this paper we show
that ensembles of entwined paths on a discrete space-time lattice are simply
described by coupled difference equations which are discrete versions of the
Dirac equation. There is no analytic continuation, explicit or forced, involved
in this description. The entwined paths are `self-quantizing'. We also show
that simple classical stochastic processes that generate the difference
equations as ensemble averages are stable numerically and converge at a rate
governed by the details of the stochastic process. This result establishes the
Dirac equation in one dimension as a phenomenological equation describing an
underlying classical stochastic process in the same sense that the Diffusion
and Telegraph equations are phenomenological descriptions of stochastic
processes.Comment: 15 pages, 5 figures Replacement 11/02 contains minor editorial
change
Is level of neighbourhood green space associated with physical activity in green space?
Background
There is accumulating evidence that greater availability of green space in a neighbourhood is associated with health benefits for the local population. One mechanism proposed for this association is that green space provides a venue for, and therefore encourages, physical activity. It has also been suggested that socio-economic health inequalities may be narrower in greener areas because of the equalised opportunity for physical activity green spaces provide. However, research exploring associations between the availability of green space and physical activity has produced mixed results. Limits to the assessment of the type and amount of physical activity which occurs specifically in green space may account for these mixed findings. This observational study was therefore concerned with the extent to which green space is a venue for physical activity and whether this could account for narrower socio-economic health inequalities in greener neighbourhoods.<p></p>
Method
Secondary analysis of cross sectional data on 3679 adults (16+) living in urban areas across Scotland matched with a neighbourhood level measure of green space availability. Associations between green space availability and both total physical activity, and activity specifically within green space, were explored using logistic regression models. Interactions between socio-economic position and physical activity were assessed. All models adjusted for age, sex and household income.<p></p>
Results
The availability of green space in a neighbourhood was not associated with total physical activity or that specifically in green space. There was no evidence that income-related inequalities in physical activity within green space were narrower in greener areas of Scotland.<p></p>
Conclusion
Physical activity may not be the main mechanism explaining the association between green space and health in Scotland. The direct effect of perceiving a natural environment on physiological and psychological health may offer an alternative explanation.<p></p>
Quantum-classical transition in Scale Relativity
The theory of scale relativity provides a new insight into the origin of
fundamental laws in physics. Its application to microphysics allows us to
recover quantum mechanics as mechanics on a non-differentiable (fractal)
spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as
geodesic equations in this framework. A development of the intrinsic properties
of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads
us to a derivation of the Dirac equation within the scale-relativity paradigm.
The complex form of the wavefunction in the Schrodinger and Klein-Gordon
equations follows from the non-differentiability of the geometry, since it
involves a breaking of the invariance under the reflection symmetry on the
(proper) time differential element (ds - ds). This mechanism is generalized
for obtaining the bi-quaternionic nature of the Dirac spinor by adding a
further symmetry breaking due to non-differentiability, namely the differential
coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance
under parity and time inversion. The Pauli equation is recovered as a
non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur
A Study of Giant Pulses from PSR J1824-2452A
We have searched for microsecond bursts of emission from millisecond pulsars
in the globular cluster M28 using the Parkes radio telescope. We detected a
total of 27 giant pulses from the known emitter PSR J1824-2452A. At wavelengths
around 20 cm the giant pulses are scatter-broadened to widths of around 2
microseconds and follow power-law statistics. The pulses occur in two narrow
phase-windows which correlate in phase with X-ray emission and trail the peaks
of the integrated radio pulse-components. Notably, the integrated radio
emission at these phase windows has a steeper spectral index than other
emission. The giant pulses exhibit a high degree of polarization, with many
being 100% elliptically polarized. Their position angles appear random.
Although the integrated emission of PSR J1824-2452A is relatively stable for
the frequencies and bandwidths observed, the intensities of individual giant
pulses vary considerably across our bands. Two pulses were detected at both
2700 and 3500 MHz. The narrower of the two pulses is 20 ns wide at 3500 MHz. At
2700 MHz this pulse has an inferred brightness temperature at maximum of 5 x
10^37 K. Our observations suggest the giant pulses of PSR J1824-2452A are
generated in the same part of the magnetosphere as X-ray emission through a
different emission process to that of ordinary pulses.Comment: Accepted by Ap
PSR J1909-3744, a Binary Millisecond Pulsar with a Very Small Duty Cycle
We report the discovery of PSR J1909-3744, a 2.95 millisecond pulsar in a
nearly circular 1.53 day orbit. Its narrow pulse width of 43 microseconds
allows pulse arrival times to be determined with great accuracy. We have
spectroscopically identified the companion as a moderately hot (T = 8500 K)
white dwarf with strong absorption lines. Radial velocity measurements of the
companion will yield the mass ratio of the system. Our timing data suggest the
presence of Shapiro delay; we expect that further timing observations, combined
with the mass ratio, will allow the first accurate determination of a
millisecond pulsar mass. We have measured the timing parallax and proper motion
for this pulsar which indicate a transverse velocity of 140 (+80/-40) km/s.
This pulsar's stunningly narrow pulse profile makes it an excellent candidate
for precision timing experiments that attempt to detect low frequency
gravitational waves from coalescing supermassive black hole binaries.Comment: 12 pages, 4 figures. Accepted for publication in ApJ
Challenges in the development of the orbiter atmosphere revitalization subsystem
The space shuttle orbiter atmospheric revitalization subsystem provides thermal and contaminant control as well as total- and oxygen partial-pressure control of the environment within the orbiter crew cabin. Challenges that occurred during the development of this subsystem for the space shuttle orbiter are described. The design of the rotating hardware elements of the system (pumps, fans, etc.) required significant development to meet the requirements of long service life, maintainability, and high cycle-fatigue life. As a result, a stringent development program, particularly in the areas of bearing life and heat dissipation, was required. Another area requiring significant development was cabin humidity control and condensate collection
Discovery of Five Recycled Pulsars in a High Galactic Latitude Survey
We present five recycled pulsars discovered during a 21-cm survey of
approximately 4,150 deg^2 between 15 deg and 30 deg from the galactic plane
using the Parkes radio telescope. One new pulsar, PSR J1528-3146, has a 61 ms
spin period and a massive white dwarf companion. Like many recycled pulsars
with heavy companions, the orbital eccentricity is relatively high (~0.0002),
consistent with evolutionary models that predict less time for circularization.
The four remaining pulsars have short spin periods (3 ms < P < 6 ms); three of
these have probable white dwarf binary companions and one (PSR J2010-1323) is
isolated. PSR J1600-3053 is relatively bright for its dispersion measure of
52.3 pc cm^-3 and promises good timing precision thanks to an intrinsically
narrow feature in its pulse profile, resolvable through coherent dedispersion.
In this survey, the recycled pulsar discovery rate was one per four days of
telescope time or one per 600 deg^2 of sky. The variability of these sources
implies that there are more millisecond pulsars that might be found by
repeating this survey.Comment: 15 pages, 3 figures, accepted for publication in Ap
- …
