20 research outputs found

    Detection of several daemon populations in Earth-crossing orbits

    Full text link
    Detection of negative daemons, DArk Electric Matter Objects, viz. Planckian supermassive (~2*10^-5 g) particles, whose population has been detected in March 2000 to populate near-Earth, almost circular, heliocentric orbits (NEACHOs), is being continued. The NEACHO objects hit the Earth with a velocity ~10-15 km/s. The results of these and new experiments (April-June, 2001) are now processed taking into account the scintillation shape depending on the magnitude and sign of the velocity of the daemons crossing our detector. The data accumulated during the time of the experiment and processed in this way reveal also the presence of (1) a high-velocity (~35-50 km/s) daemon population whose objects can be related to a population in the Galactic disk and/or that in strongly elongated, Earth-crossing heliocentric orbits (SEECHOs), as well as (2) a low-velocity (~3-10 km/s) population in geocentric Earth-surface-crossing orbits (GESCOs), whose objects traverse repeatedly the Earth to suffer a decrease in velocity by ~30-40% in a month in the process. An evolutionary relation between all these three (four?) populations is discussed. Assumptions concerning their manifestations in further observations are put forward. An analysis of possible interaction processes of daemons, which may have different velocities and directions of motion, with the detector components [ZnS(Ag) layers, 0.3-mm thick tinned-iron sheets etc.] on the atomic (emission of Auger electrons) and nuclear (nucleon evaporation from a nucleus excited in the capture and, subsequently, the decay of its protons) levels has permitted estimation of some characteristic times. In particular, the decay time of a daemon-containing proton is ~10^-6 s.Comment: 17 pages in PDF format. Ioffe Physical-Technical Institute preprint No.1753 (July 10, 2001). The work was presented at the All-Russian Astronomical Conference, August 6-12, 2001, St.Petersburg, Russi

    Networked buffering: a basic mechanism for distributed robustness in complex adaptive systems

    Get PDF
    A generic mechanism - networked buffering - is proposed for the generation of robust traits in complex systems. It requires two basic conditions to be satisfied: 1) agents are versatile enough to perform more than one single functional role within a system and 2) agents are degenerate, i.e. there exists partial overlap in the functional capabilities of agents. Given these prerequisites, degenerate systems can readily produce a distributed systemic response to local perturbations. Reciprocally, excess resources related to a single function can indirectly support multiple unrelated functions within a degenerate system. In models of genome:proteome mappings for which localized decision-making and modularity of genetic functions are assumed, we verify that such distributed compensatory effects cause enhanced robustness of system traits. The conditions needed for networked buffering to occur are neither demanding nor rare, supporting the conjecture that degeneracy may fundamentally underpin distributed robustness within several biotic and abiotic systems. For instance, networked buffering offers new insights into systems engineering and planning activities that occur under high uncertainty. It may also help explain recent developments in understanding the origins of resilience within complex ecosystems. \ud \u

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy

    PDZ domains and their binding partners: structure, specificity, and modification

    Get PDF
    PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins. They regulate multiple biological processes such as transport, ion channel signaling, and other signal transduction systems. This review discusses the structural characterization of PDZ domains and the use of recently emerging technologies such as proteomic arrays and peptide libraries to study the binding properties of PDZ-mediated interactions. Regulatory mechanisms responsible for PDZ-mediated interactions, such as phosphorylation in the PDZ ligands or PDZ domains, are also discussed. A better understanding of PDZ protein-protein interaction networks and regulatory mechanisms will improve our knowledge of many cellular and biological processes

    Self-organization of developing embryo using scale-invariant approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos.</p> <p>Methods</p> <p>In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing <it>C. elegans </it>during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method.</p> <p>Results and conclusion</p> <p>The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2.</p
    corecore