4,307 research outputs found
Polarization singularity anisotropy: determining monstardom
C points, that is isolated points of circular polarization in transverse
fields of varying polarization, are classified morphologically into three
distinct types, known as lemons, stars and monstars. These morphologies are
interpreted here according to two natural parameters associated with the
singularity, namely the anisotropy of the C point, and the polarization azimuth
on the anisotropy axis. In addition to providing insight into singularity
morphology, this observation applies to the densities of the various
morphologies in isotropic random polarization speckle fields.Comment: 3 pages, 2 figures, Optics Letters styl
Ceramic Matrix Composite Characterization under a Combustion and Loading Environment
Lightweight materials that can withstand high temperatures and corrosive environments are constantly sought after in the aerospace industry, typically for Gas Turbine Engine (GTE) application. These materials need to retain their strength throughout the long service period they would see in the combustor and turbine components of a GTE. One material that is ideal for these types of applications is an oxide/oxide Ceramic Matrix Composite (CMC). The fatigue behavior of the oxide/oxide CMC NextelTM 720/Alumina (N720/A) was investigated in a unique high temperature environment. N720/A consisted of an 8-harness satin weave of NextelTM aluminum oxide/silicon oxide fibers bound together with an alumina matrix. Past studies have encompassed fatigue and creep-rupture resistant at elevated temperatures in laboratory air or other non-combustion environment, such as steam or inert gas. The specimens used in this research were exposed to a combustion environment, which is a much more volatile and realistic environment for what this material would see in a GTE application. The combustion environment was created using a High-Velocity Oxygen Fuel (HVOF) Gun. The flame directly impinged the CMC specimen on one side as it underwent fatigue testing, heating up that surface to approximately 1200 °C. Results show that the effects of a combustion environment on the materials fatigue behavior are negligible
Polarization of tightly focused laser beams
The polarization properties of monochromatic light beams are studied. In
contrast to the idealization of an electromagnetic plane wave, finite beams
which are everywhere linearly polarized in the same direction do not exist.
Neither do beams which are everywhere circularly polarized in a fixed plane. It
is also shown that transversely finite beams cannot be purely transverse in
both their electric and magnetic vectors, and that their electromagnetic energy
travels at less than c. The electric and magnetic fields in an electromagnetic
beam have different polarization properties in general, but there exists a
class of steady beams in which the electric and magnetic polarizations are the
same (and in which energy density and energy flux are independent of time).
Examples are given of exactly and approximately linearly polarized beams, and
of approximately circularly polarized beams.Comment: 9 pages, 6 figure
Packet utilisation definitions for the ESA XMM mission
XMM, ESA's X-Ray Multi-Mirror satellite, due for launch at the end of 1999 will be the first ESA scientific spacecraft to implement the ESA packet telecommand and telemetry standards and will be the first ESOC-controlled science mission to take advantage of the new flight control system infrastructure development (based on object-oriented design and distributed-system architecture) due for deployment in 1995. The implementation of the packet standards is well defined at packet transport level. However, the standard relevant to the application level (the ESA Packet Utilization Standard) covers a wide range of on-board 'services' applicable in varying degrees to the needs of XMM. In defining which parts of the ESA PUS to implement, the XMM project first considered the mission objectives and the derived operations concept and went on to identify a minimum set of packet definitions compatible with these aspects. This paper sets the scene as above and then describes the services needed for XMM and the telecommand and telemetry packet types necessary to support each service
Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory
The methods of density-functional perturbation theory may be used to
calculate various physical response properties of insulating crystals including
elastic, dielectric, Born charge, and piezoelectric tensors. These and other
important tensors may be defined as second derivatives of the total energy with
respect to atomic-displacement, electric-field, or strain perturbations, or as
mixed derivatives with respect to two of these perturbations. The resulting
tensor quantities tend to be coupled in complex ways in polar crystals, giving
rise to a variety of variant definitions. For example, it is generally
necessary to distinguish between elastic tensors defined under different
electrostatic boundary conditions, and between dielectric tensors defined under
different elastic boundary conditions. Here, we describe an approach for
computing all of these various response tensors in a unified and systematic
fashion. Applications are presented for two materials, wurtzite ZnO and
rhombohedral BaTiO3, at zero temperature.Comment: 14 pages. Uses REVTEX macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/xfw_sys/index.htm
A selected history of expectation bias in physics
The beliefs of physicists can bias their results towards their expectations
in a number of ways. We survey a variety of historical cases of expectation
bias in observations, experiments, and calculations.Comment: 6 pages, 2 figure
Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry
In this paper a systematic approach to the design of bulk isotropic magnetic
metamaterials is presented. The role of the symmetries of both the constitutive
element and the lattice are analyzed. For this purpose it is assumed that the
metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice.
The minimum symmetries needed to ensure an isotropic behavior are analyzed, and
some particular configurations are proposed. Besides, an equivalent circuit
model is proposed for the considered cubic SRR resonators. Experiments are
carried out in order to validate the proposed theory. We hope that this
analysis will pave the way to the design of bulk metamaterials with strong
isotropic magnetic response, including negative permeability and left-handed
metamaterials.Comment: Submitted to Physical Review B, 23 page
Electronic band structure, Fermi surface, and elastic properties of new 4.2K superconductor SrPtAs from first-principles calculations
The hexagonal phase SrPtAs (s.g. P6/mmm; #194) with a honeycomb lattice
structure very recently was declared as a new low-temperature (TC ~ 4.2K)
superconductor. Here by means of first-principles calculations the optimized
structural parameters, electronic bands, Fermi surface, total and partial
densities of states, inter-atomic bonding picture, independent elastic
constants, bulk and shear moduli for SrPtAs were obtained for the first time
and analyzed in comparison with the related layered superconductor SrPt2As2.Comment: 8 pages, 4 figure
Electromagnetic wave scattering by a superconductor
The interaction between radiation and superconductors is explored in this
paper. In particular, the calculation of a plane standing wave scattered by an
infinite cylindrical superconductor is performed by solving the Helmholtz
equation in cylindrical coordinates. Numerical results computed up to
of Bessel functions are presented for different wavelengths
showing the appearance of a diffraction pattern.Comment: 3 pages, 3 figure
- …