15 research outputs found
Progress in real-time photoacoustic imaging using optical ultrasound detection
Optical phase contrast full field detection in combination with a CCD-camera can be used to record acoustic fields. This allows to obtain two-dimensional photoacoustic projection images in real-time. The present work shows an extension of the technique towards full three-dimensional photoacoustic tomography. The reconstruction of the initial three dimensional pressure distribution is a two step process. First of all, projection images of the initial pressure distribution are acquired. This is done by back propagating the observed wave pattern in frequency space. In the second step the inverse Radon transform is applied to the obtained projection dataset to reconstruct the initial three dimensional pressure distribution. An experiment is performed using a phantom sample which mimics the properties of biological samples to show the overall applicability of this technique for real-time photoacoustic imaging
Photoacoustic section imaging with integrating detectors
Photoacoustic section imaging is a method for visualizing structures with optical contrast in selected layers of an extended object. In order to avoid resolution limitations that are due to commonly used ultrasound detectors of finite size, we propose the use of extended, integrating cylindrical elements for focusing the acoustic detection into the selected section. Two imaging methods based on piezoelectric and optical detection are presented. Resolution limits and results on zebra fish are demonstrated
Ultrasensitive plano-concave optical microresonators for ultrasound sensing
Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques
A practical guide to photoacoustic tomography in the life sciences
The life sciences can benefit greatly from imaging technologies that connect microscopic discoveries with macroscopic observations. One technology uniquely positioned to provide such benefits is photoacoustic tomography (PAT), a sensitive modality for imaging optical absorption contrast over a range of spatial scales at high speed. In PAT, endogenous contrast reveals a tissue's anatomical, functional, metabolic, and histologic properties, and exogenous contrast provides molecular and cellular specificity. The spatial scale of PAT covers organelles, cells, tissues, organs, and small animals. Consequently, PAT is complementary to other imaging modalities in contrast mechanism, penetration, spatial resolution, and temporal resolution. We review the fundamentals of PAT and provide practical guidelines for matching PAT systems with research needs. We also summarize the most promising biomedical applications of PAT, discuss related challenges, and envision PAT's potential to lead to further breakthroughs