819 research outputs found

    Stochastic resonance as a collective property of ion channel assemblies

    Get PDF
    By use of a stochastic generalization of the Hodgkin-Huxley model we investigate both the phenomena of stochastic resonance (SR) and coherence resonance (CR) in variable size patches of an excitable cell membrane. Our focus is on the challenge how internal noise stemming from individual ion channels does affect collective properties of the whole ensemble. We investigate both an unperturbed situation with no applied stimuli and one in which the membrane is stimulated externally by a periodic signal and additional external noise. For the nondriven case, we demonstrate the existence of an optimal size of the membrane patch for which the internal noise causes a most regular spike activity. This phenomenon shall be termed intrinsic CR. In presence of an applied periodic stimulus we demonstrate that the signal-to-noise ratio (SNR) exhibits SR vs. decreasing patch size, or vs. increasing internal noise strength, respectively. Moreover, we demonstrate that conventional SR vs. the external noise intensity occurs only for sufficiently large membrane patches, when the intensity of internal noise is below its optimal level. Thus, biological SR seemingly is rooted in the collective properties of large ion channel ensembles rather than in the individual stochastic dynamics of single ion channels.Comment: 9 pages, 2 figure

    Tilt Texture Domains on a Membrane and Chirality induced Budding

    Full text link
    We study the equilibrium conformations of a lipid domain on a planar fluid membrane where the domain is decorated by a vector field representing the tilt of the stiff fatty acid chains of the lipid molecules, while the surrounding membrane is fluid and structureless. The inclusion of chirality in the bulk of the domain induces a novel budding of the membrane, which preempts the budding induced by a decrease in interfacial tension.Comment: 5 pages, 3 figure

    Aggregation Patterns in Stressed Bacteria

    Full text link
    We study the formation of spot patterns seen in a variety of bacterial species when the bacteria are subjected to oxidative stress due to hazardous byproducts of respiration. Our approach consists of coupling the cell density field to a chemoattractant concentration as well as to nutrient and waste fields. The latter serves as a triggering field for emission of chemoattractant. Important elements in the proposed model include the propagation of a front of motile bacteria radially outward form an initial site, a Turing instability of the uniformly dense state and a reduction of motility for cells sufficiently far behind the front. The wide variety of patterns seen in the experiments is explained as being due the variation of the details of the initiation of the chemoattractant emission as well as the transition to a non-motile phase.Comment: 4 pages, REVTeX with 4 postscript figures (uuencoded) Figures 1a and 1b are available from the authors; paper submitted to PRL

    Nonequilibrium steady states in a vibrated-rod monolayer: tetratic, nematic and smectic correlations

    Get PDF
    We study experimentally the nonequilibrium phase behaviour of a horizontal monolayer of macroscopic rods. The motion of the rods in two dimensions is driven by vibrations in the vertical direction. Aside from the control variables of packing fraction and aspect ratio that are typically explored in molecular liquid crystalline systems, due to the macroscopic size of the particles we are also able to investigate the effect of the precise shape of the particle on the steady states of this driven system. We find that the shape plays an important role in determining the nature of the orientational ordering at high packing fraction. Cylindrical particles show substantial tetratic correlations over a range of aspect ratios where spherocylinders have previously been shown by Bates et al (JCP 112, 10034 (2000)) to undergo transitions between isotropic and nematic phases. Particles that are thinner at the ends (rolling pins or bails) show nematic ordering over the same range of aspect ratios, with a well-established nematic phase at large aspect ratio and a defect-ridden nematic state with large-scale swirling motion at small aspect ratios. Finally, long-grain, basmati rice, whose geometry is intermediate between the two shapes above, shows phases with strong indications of smectic order.Comment: 18 pages and 13 eps figures, references adde

    On random flights with non-uniformly distributed directions

    Full text link
    This paper deals with a new class of random flights Xd(t),t>0,\underline{\bf X}_d(t),t>0, defined in the real space Rd,d2,\mathbb{R}^d, d\geq 2, characterized by non-uniform probability distributions on the multidimensional sphere. These random motions differ from similar models appeared in literature which take directions according to the uniform law. The family of angular probability distributions introduced in this paper depends on a parameter ν0\nu\geq 0 which gives the level of drift of the motion. Furthermore, we assume that the number of changes of direction performed by the random flight is fixed. The time lengths between two consecutive changes of orientation have joint probability distribution given by a Dirichlet density function. The analysis of Xd(t),t>0,\underline{\bf X}_d(t),t>0, is not an easy task, because it involves the calculation of integrals which are not always solvable. Therefore, we analyze the random flight Xmd(t),t>0,\underline{\bf X}_m^d(t),t>0, obtained as projection onto the lower spaces Rm,m<d,\mathbb{R}^m,m<d, of the original random motion in Rd\mathbb{R}^d. Then we get the probability distribution of Xmd(t),t>0.\underline{\bf X}_m^d(t),t>0. Although, in its general framework, the analysis of Xd(t),t>0,\underline{\bf X}_d(t),t>0, is very complicated, for some values of ν\nu, we can provide some results on the process. Indeed, for ν=1\nu=1, we obtain the characteristic function of the random flight moving in Rd\mathbb{R}^d. Furthermore, by inverting the characteristic function, we are able to give the analytic form (up to some constants) of the probability distribution of Xd(t),t>0.\underline{\bf X}_d(t),t>0.Comment: 28 pages, 3 figure

    Capacitance fluctuations causing channel noise reduction in stochastic Hodgkin-Huxley systems

    Full text link
    Voltage-dependent ion channels determine the electric properties of axonal cell membranes. They not only allow the passage of ions through the cell membrane but also contribute to an additional charging of the cell membrane resulting in the so-called capacitance loading. The switching of the channel gates between an open and a closed configuration is intrinsically related to the movement of gating charge within the cell membrane. At the beginning of an action potential the transient gating current is opposite to the direction of the current of sodium ions through the membrane. Therefore, the excitability is expected to become reduced due to the influence of a gating current. Our stochastic Hodgkin-Huxley like modeling takes into account both the channel noise -- i.e. the fluctuations of the number of open ion channels -- and the capacitance fluctuations that result from the dynamics of the gating charge. We investigate the spiking dynamics of membrane patches of variable size and analyze the statistics of the spontaneous spiking. As a main result, we find that the gating currents yield a drastic reduction of the spontaneous spiking rate for sufficiently large ion channel clusters. Consequently, this demonstrates a prominent mechanism for channel noise reduction.Comment: 18 page

    String-like Clusters and Cooperative Motion in a Model Glass-Forming Liquid

    Full text link
    A large-scale molecular dynamics simulation is performed on a glass-forming Lennard-Jones mixture to determine the nature of dynamical heterogeneities which arise in this model fragile liquid. We observe that the most mobile particles exhibit a cooperative motion in the form of string-like paths (``strings'') whose mean length and radius of gyration increase as the liquid is cooled. The length distribution of the strings is found to be similar to that expected for the equilibrium polymerization of linear polymer chains.Comment: 6 pages of RevTex, 6 postscript figures, uses epsf.st

    Co-Evolution of quasispecies: B-cell mutation rates maximize viral error catastrophes

    Full text link
    Co-evolution of two coupled quasispecies is studied, motivated by the competition between viral evolution and adapting immune response. In this co-adaptive model, besides the classical error catastrophe for high virus mutation rates, a second ``adaptation-'' catastrophe occurs, when virus mutation rates are too small to escape immune attack. Maximizing both regimes of viral error catastrophes is a possible strategy for an optimal immune response, reducing the range of allowed viral mutation rates to a minimum. From this requirement one obtains constraints on B-cell mutation rates and receptor lengths, yielding an estimate of somatic hypermutation rates in the germinal center in accordance with observation.Comment: 4 pages RevTeX including 2 figure

    Teaching Africa and international studies: Forum introduction

    Get PDF
    Africa has often been defined and represented by outsiders. In International Studies, the continent is frequently viewed as peripheral and uninteresting. This is clearly a problem, and an increasingly apparent one as the number of courses on Africa and IS grow, both in Africa and beyond. Many academics who run these courses are keen to challenge the continent’s traditional marginalisation and perceived dependency, but they are limited by the resources available to them, and the fact that many are establishing new courses from scratch. This article outlines some of the key debates around teaching Africa and IS, setting the scene for the articles that follow
    corecore