17,404 research outputs found

    Gravitational-Wave Implications for the Parity Symmetry of Gravity at GeV Scale

    No full text
    Gravitational waves generated by the coalescence of compact binary open a new window to test the fundamental properties of gravity in the strong-field and dynamical regime. In this work, we focus on the parity symmetry of gravity which, if broken, can leave imprints on the waveform of gravitational wave. We construct generalized waveforms with amplitude and velocity birefringence due to parity violation in the effect field theory formalism, then analyze the open data of the ten binary black-hole merger events and the two binary neutron-star merger events detected by LIGO and Virgo collaboration. We do not find any signatures of violation of gravitational parity conservation, thereby setting the lower bound of the parity-violating energy scale to be 0.070.07 GeV. This presents the first observational evidence of the parity conservation of gravity at high energy scale, about 17 orders of magnitude tighter than the constraints from the Solar system tests and binary pulsar observation. The third-generation gravitational-wave detector is capable of probing the parity-violating energy scale at O(102)\mathcal{O}(10^2) GeV

    Quantization and Corrections of Adiabatic Particle Transport in a Periodic Ratchet Potential

    Full text link
    We study the transport of an overdamped particle adiabatically driven by an asymmetric potential which is periodic in both space and time. We develop an adiabatic perturbation theory after transforming the Fokker-Planck equation into a time-dependent hermitian problem, and reveal an analogy with quantum adiabatic particle transport. An analytical expression is obtained for the ensemble average of the particle velocity in terms of the Berry phase of the Bloch states. Its time average is shown to be quantized as a Chern number in the deterministic or tight-binding limit, with exponentially small corrections. In the opposite limit, where the thermal energy dominates the ratchet potential, a formula for the average velocity is also obtained, showing a second order dependence on the potential.Comment: 8 page

    An analytical model of transducer array arrangement for guided wave excitation and propagation on cylindrical structures

    Get PDF
    Ultrasonic guided wave (GW) inspection is one of the non-destructive testing (NDT) techniques available for the engineering structures. Compared with other NDT techniques, guided waves can propagate a long distance with a relatively high sensitivity to defects in the structure. In order to increase the performance for pipe inspections to meet higher requirements under different conditions, the optimisation of piezoelectric transducer array design is still a need, as the technique is currently subject to a complex analysis due to wide number of guided wave modes generated. This can be done by optimising the transducer array design. In this paper, it is described an analytical mode of a set of piezoelectric transducer arrays upon torsional wave mode T(0,1) excitation in a tubular structure. The proposed analytical model for predicting signal propagation is validated by using finite element analysis in ABAQUS and three-dimensional laser vibrometer experiments for transducer array characterisations. The proposed analytical model works well and very fast for simulating transducer excitation and wave propagation along cylindrical structures. This will significantly reduce the complexity of guided wave analysis, enhancing effectively the structural health of structures and subsequently reducing the industry maintenance cost

    Berry phases in superconducting transitions

    Full text link
    I generalize the concept of Berry's geometrical phase for quasicyclic Hamiltonians to the case in which the ground state evolves adiabatically to an excited state after one cycle, but returns to the ground state after an integer number of cycles. This allows to extend the charge Berry phase gamma_c related to the macroscopic polarization, to many-body systems with fractional number of particles per site. Under certain conditions, gamma_c and the spin Berry phase gamma_s jump in pi at the boundary of superconducting phases. In the extended Hubbard chain with on-site attraction U and nearest-neighbor interaction V at quarter filling, the transitions detected agree very well with exact results in two limits solved by the Bethe ansatz, and with previous numerical studies. In chains with spin SU(2) symmetry, gamma_s jumps when a spin gap opens.Comment: 5 pages, 3 figures, accepted in Europhys. Let

    Critical Phenomena and Thermodynamic Geometry of RN-AdS Black Holes

    Full text link
    The phase transition of Reissner-Nordstr\"om black holes in (n+1)(n+1)-dimensional anti-de Sitter spacetime is studied in details using the thermodynamic analogy between a RN-AdS black hole and a van der Waals liquid gas system. We first investigate critical phenomena of the RN-AdS black hole. The critical exponents of relevant thermodynamical quantities are evaluated. We find identical exponents for a RN-AdS black hole and a Van der Waals liquid gas system. This suggests a possible universality in the phase transitions of these systems. We finally study the thermodynamic behavior using the equilibrium thermodynamic state space geometry and find that the scalar curvature diverges exactly at the van der Waals-like critical point where the heat capacity at constant charge of the black hole diverges.Comment: 18 pages, 5 figure

    Two qubit copying machine for economical quantum eavesdropping

    Get PDF
    We study the mapping which occurs when a single qubit in an arbitrary state interacts with another qubit in a given, fixed state resulting in some unitary transformation on the two qubit system which, in effect, makes two copies of the first qubit. The general problem of the quality of the resulting copies is discussed using a special representation, a generalization of the usual Schmidt decomposition, of an arbitrary two-dimensional subspace of a tensor product of two 2-dimensional Hilbert spaces. We exhibit quantum circuits which can reproduce the results of any two qubit copying machine of this type. A simple stochastic generalization (using a ``classical'' random signal) of the copying machine is also considered. These copying machines provide simple embodiments of previously proposed optimal eavesdropping schemes for the BB84 and B92 quantum cryptography protocols.Comment: Minor changes. 26 pages RevTex including 7 PS figure
    corecore