67 research outputs found

    Detection of Base Substitution-Type Somatic Mosaicism of the NLRP3 Gene with >99.9% Statistical Confidence by Massively Parallel Sequencing

    Get PDF
    Chronic infantile neurological cutaneous and articular syndrome (CINCA), also known as neonatal-onset multisystem inflammatory disease (NOMID), is a dominantly inherited systemic autoinflammatory disease and is caused by a heterozygous germline gain-of-function mutation in the NLRP3 gene. We recently found a high incidence of NLRP3 somatic mosaicism in apparently mutation-negative CINCA/NOMID patients using subcloning and subsequent capillary DNA sequencing. It is important to rapidly diagnose somatic NLRP3 mosaicism to ensure proper treatment. However, this approach requires large investments of time, cost, and labour that prevent routine genetic diagnosis of low-level somatic NLRP3 mosaicism. We developed a routine pipeline to detect even a low-level allele of NLRP3 with statistical significance using massively parallel DNA sequencing. To address the critical concern of discriminating a low-level allele from sequencing errors, we first constructed error rate maps of 14 polymerase chain reaction products covering the entire coding NLRP3 exons on a Roche 454 GS-FLX sequencer from 50 control samples without mosaicism. Based on these results, we formulated a statistical confidence value for each sequence variation in each strand to discriminate sequencing errors from real genetic variation even in a low-level allele, and thereby detected base substitutions at an allele frequency as low as 1% with 99.9% or higher confidence

    Overexpression of a Minimal Domain of Calpastatin Suppresses IL-6 Production and Th17 Development via Reduced NF-κB and Increased STAT5 Signals

    Get PDF
    Calpain, a calcium-dependent cysteine protease, is reportedly involved in the pathophysiology of autoimmune diseases such as rheumatoid arthritis (RA). In addition, autoantibodies against calpastatin, a natural and specific inhibitor of calpain, are widely observed in RA. We previously reported that E-64-d, a membrane-permeable cysteine protease inhibitor, is effective in treating experimental arthritis. However, the exact role of the calpastatin-calpain balance in primary inflammatory cells remains unclear. Here we investigated the effect of calpain-specific inhibition by overexpressing a minimal functional domain of calpastatin in primary helper T (Th) cells, primary fibroblasts from RA patients, and fibroblast cell lines. We found that the calpastatin-calpain balance varied during Th1, Th2, and Th17 development, and that overexpression of a minimal domain of calpastatin (by retroviral gene transduction) or the inhibition of calpain by E-64-d suppressed the production of IL-6 and IL-17 by Th cells and the production of IL-6 by fibroblasts. These suppressions were associated with reductions in RORγt expression and STAT3 phosphorylation. Furthermore, inhibiting calpain by silencing its small regulatory subunit (CPNS) suppressed Th17 development. We also confirmed that overexpressing a minimal domain of calpastatin suppressed IL-6 by reducing NF-κB signaling via the stabilization of IκBα, without affecting the upstream signal. Moreover, our findings indicated that calpastatin overexpression suppressed IL-17 production by Th cells by up-regulating the STAT5 signal. Finally, overexpression of a minimal domain of calpastatin suppressed IL-6 production efficiently in primary fibroblasts derived from the RA synovium. These findings suggest that inhibiting calpain by overexpressing a minimal domain of calpastatin could coordinately suppress proinflammatory activities, not only those of Th cells but also of synovial fibroblasts. Thus, this strategy may prove viable as a candidate treatment for inflammatory diseases such as RA

    Obvious optic disc swelling in a patient with cryopyrin-associated periodic syndrome

    No full text
    Mariko Kawai,1 Tadanobu Yoshikawa,1 Ryuta Nishikomori,2 Toshio Heike,2 Kanji Takahashi11Department of Ophthalmology, Kansai Medical University, Osaka, 2Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, JapanAbstract: Cryopyrin-associated periodic syndrome (CAPS) is a group of rare hereditary autoinflammatory diseases caused by mutations of the NLRP3 gene, and leads to excessive production of the proinflammatory cytokine, interleukin-lß. A 35-year-old male presented with recurrent symptoms of urticarial-like rash, periodic fever, arthralgia, headache, and eye redness. His best-corrected visual acuity was 1.0 OD and 0.9 OS. Slit-lamp examination showed conjunctival and episcleral injection in both eyes. Ophthalmoscopy revealed obvious bilateral optic disc swelling and retinal vascular sheathing around the optic discs. Spectral domain optical coherence tomography also showed obvious optic disc swelling. Steroid and nonsteroidal anti-inflammatory drugs did not improve these symptoms. Genetic testing detected a heterozygous mutation of c.907G>A. Thus, the patient was genetically confirmed with CAPS. Visual acuity did not decrease for 3 years, although the optic discs became white in color. CAPS should therefore be distinguished from other disorders when examining optic disc swelling and/or uveitis patients with urticarial-like rash and periodic fever.Keywords: interleukin-lß, chronic infantile cutaneous and articular syndrome, cryopyrin-associated periodic syndrome, leucine-rich repeat-containing protein 3, optic disc swellin

    若年発症サルコイドーシス/Blau症候群

    No full text

    Remarkable improvement of articular pain by biologics in a Multicentric carpotarsal osteolysis patient with a mutation of MAFB gene

    Get PDF
    From 8th International Congress of Familial Mediterranean Fever and Systemic Autoinflammatory Diseases Dresden, Germany. 30 September - 3 October 201
    corecore