2,089 research outputs found
Infinite dimensional Lie algebras in 4D conformal quantum field theory
The concept of global conformal invariance (GCI) opens the way of applying
algebraic techniques, developed in the context of 2-dimensional chiral
conformal field theory, to a higher (even) dimensional space-time. In
particular, a system of GCI scalar fields of conformal dimension two gives rise
to a Lie algebra of harmonic bilocal fields, V_m(x,y), where the m span a
finite dimensional real matrix algebra M closed under transposition. The
associative algebra M is irreducible iff its commutant M' coincides with one of
the three real division rings. The Lie algebra of (the modes of) the bilocal
fields is in each case an infinite dimensional Lie algebra: a central extension
of sp(infty,R) corresponding to the field R of reals, of u(infty,infty)
associated to the field C of complex numbers, and of so*(4 infty) related to
the algebra H of quaternions. They give rise to quantum field theory models
with superselection sectors governed by the (global) gauge groups O(N), U(N),
and U(N,H)=Sp(2N), respectively.Comment: 16 pages, with minor improvements as to appear in J. Phys.
Large-scale Hierarchical Alignment for Data-driven Text Rewriting
We propose a simple unsupervised method for extracting pseudo-parallel
monolingual sentence pairs from comparable corpora representative of two
different text styles, such as news articles and scientific papers. Our
approach does not require a seed parallel corpus, but instead relies solely on
hierarchical search over pre-trained embeddings of documents and sentences. We
demonstrate the effectiveness of our method through automatic and extrinsic
evaluation on text simplification from the normal to the Simple Wikipedia. We
show that pseudo-parallel sentences extracted with our method not only
supplement existing parallel data, but can even lead to competitive performance
on their own.Comment: RANLP 201
Character-level Chinese-English Translation through ASCII Encoding
Character-level Neural Machine Translation (NMT) models have recently
achieved impressive results on many language pairs. They mainly do well for
Indo-European language pairs, where the languages share the same writing
system. However, for translating between Chinese and English, the gap between
the two different writing systems poses a major challenge because of a lack of
systematic correspondence between the individual linguistic units. In this
paper, we enable character-level NMT for Chinese, by breaking down Chinese
characters into linguistic units similar to that of Indo-European languages. We
use the Wubi encoding scheme, which preserves the original shape and semantic
information of the characters, while also being reversible. We show promising
results from training Wubi-based models on the character- and subword-level
with recurrent as well as convolutional models.Comment: 7 pages, 3 figures, 3rd Conference on Machine Translation (WMT18),
201
Unitary Positive-Energy Representations of Scalar Bilocal Quantum Fields
The superselection sectors of two classes of scalar bilocal quantum fields in
D>=4 dimensions are explicitly determined by working out the constraints
imposed by unitarity. The resulting classification in terms of the dual of the
respective gauge groups U(N) and O(N) confirms the expectations based on
general results obtained in the framework of local nets in algebraic quantum
field theory, but the approach using standard Lie algebra methods rather than
abstract duality theory is complementary. The result indicates that one does
not lose interesting models if one postulates the absence of scalar fields of
dimension D-2 in models with global conformal invariance. Another remarkable
outcome is the observation that, with an appropriate choice of the Hamiltonian,
a Lie algebra embedded into the associative algebra of observables completely
fixes the representation theory.Comment: 27 pages, v3: result improved by eliminating redundant assumptio
Jacobi Identity for Vertex Algebras in Higher Dimensions
Vertex algebras in higher dimensions provide an algebraic framework for
investigating axiomatic quantum field theory with global conformal invariance.
We develop further the theory of such vertex algebras by introducing formal
calculus techniques and investigating the notion of polylocal fields. We derive
a Jacobi identity which together with the vacuum axiom can be taken as an
equivalent definition of vertex algebra.Comment: 35 pages, references adde
Refined physical properties and g',r',i',z',J,H,K transmission spectrum of WASP-23b from the ground
Multi-band observations of planetary transits using the telescope defocus
technique may yield high-quality light curves suitable for refining the
physical properties of exoplanets even with small or medium size telescopes.
Such observations can be used to construct a broad-band transmission spectrum
of transiting planets and search for the presence of strong absorbers. We have
thoroughly characterised the orbital ephemeris and physical properties of the
transiting planet and host star in the WASP-23b system, constructed a
broad-band transmission spectrum of WASP-23b and performed a comparative
analysis with theoretical models of hot Jupiters. We observed a complete
transit of WASP-23b in seven bands simultaneously, using the GROND instrument
on the MPG/ESO 2.2m telescope at La Silla Observatory and telescope
defocussing. The optical data were taken in the Sloan g',r',i' and z' bands.
The resulting light curves are of high quality, with a root-mean-square scatter
of the residual as low as 330ppm in the z'-band, with a cadence of 90s.
Near-infrared data were obtained in the JHK bands. We performed MCMC analysis
of our photometry plus existing radial velocity data to refine measurements of
the ephemeris and physical properties of the WASP-23. We constructed a
broad-band transmission spectrum of WASP-23b and compared it with a theoretical
transmission spectrum of a Hot Jupiter. We measured the central transit time
with a precision about 8s. From this and earlier observations we obtain an
orbital period of P=2.9444300+/-0.0000011d. Our analysis also yielded a larger
radius and mass for the planet (Rp=1.067+0.045-0.038 RJup and,
Mp=0.917+0.040-0.039MJup). The transmission spectrum is marginally flat, given
the limited precision of the measurements for the planet radius and poor
spectral resolution of the data.Comment: 8 pages, 5 figures, accepted for publication in Astronomy &
Astrophysic
2MASSJ22560844+5954299: the newly discovered cataclysmic star with the deepest eclipse
Context: The SW Sex stars are assumed to represent a distinguished stage in
CV evolution, making it especially important to study them. Aims: We discovered
a new cataclysmic star and carried out prolonged and precise photometric
observations, as well as medium-resolution spectral observations. Modelling
these data allowed us to determine the psysical parameters and to establish its
peculiarities. Results: The newly discovered vataclysmic variable
2MASSJ22560844+5954299 shows the deepest eclipse amongst the known nova-like
stars. It was reproduced by totally covering a very luminous accretion disk by
a red secondary component. The temperature distribution of the disk is flatter
than that of steady-state disk. The target is unusual with the combination of a
low mass ratio q~1.0 (considerably below the limit q=1.2 of stable mass
transfer of CVs) and an M-star secondary. The intensity of the observed three
emission lines, H_alpha, He 5875, and He 6678, sharply increases around phase
0.0, accompanied by a Doppler jump to the shorter wavelength. The absence of
eclipses of the emission lines and their single-peaked profiles means that they
originate mainly in a vertically extended hot-spot halo. The emission H_alpha
line reveals S-wave wavelength shifts with semi-amplitude of around 210 km/s
and phase lag of 0.03. Conclusions: The non-steady-state emission of the
luminous accretion disk of 2MASSJ22560844+5954299 was attributed to the low
viscosity of the disk matter caused by its unusually high temperature. The star
shows all spectral properties of an SW Sex variable apart from the 0.5 central
absorption.Comment: Accepted for publication in Astronomy & Astrophysics. 12 pages, 11
figures, 6 table
Entire curves avoiding given sets in C^n
Let be a proper closed subset of and
at most countable (). We give conditions
of and , under which there exists a holomorphic immersion (or a proper
holomorphic embedding) with .Comment: 10 page
Physical properties, starspot activity, orbital obliquity, and transmission spectrum of the Qatar-2 planetary system from multi-colour photometry
We present seventeen high-precision light curves of five transits of the
planet Qatar-2b, obtained from four defocussed 2m-class telescopes. Three of
the transits were observed simultaneously in the SDSS griz passbands using the
seven-beam GROND imager on the MPG/ESO 2.2-m telescope. A fourth was observed
simultaneously in Gunn grz using the CAHA 2.2-m telescope with BUSCA, and in r
using the Cassini 1.52-m telescope. Every light curve shows small anomalies due
to the passage of the planetary shadow over a cool spot on the surface of the
host star. We fit the light curves with the prism+gemc model to obtain the
photometric parameters of the system and the position, size and contrast of
each spot. We use these photometric parameters and published spectroscopic
measurements to obtain the physical properties of the system to high precision,
finding a larger radius and lower density for both star and planet than
previously thought. By tracking the change in position of one starspot between
two transit observations we measure the orbital obliquity of Qatar-2 b to be
4.3 \pm 4.5 degree, strongly indicating an alignment of the stellar spin with
the orbit of the planet. We calculate the rotation period and velocity of the
cool host star to be 11.4 \pm 0.5 d and 3.28 \pm 0.13 km/s at a colatitude of
74 degree. We assemble the planet's transmission spectrum over the 386-976 nm
wavelength range and search for variations of the measured radius of Qatar-2 b
as a function of wavelength. Our analysis highlights a possible H2/He Rayleigh
scattering in the blue.Comment: 20 pages, 14 figures, to appear in Monthly Notices of the Royal
Astronomical Societ
Physical properties of the WASP-44 planetary system from simultaneous multi-colour photometry
We present ground-based broad-band photometry of two transits in the WASP-44
planetary system obtained simultaneously through four optical (Sloan g', r',
i', z') and three near-infrared (NIR; J, H, K) filters. We achieved low
scatters of 1-2 mmag per observation in the optical bands with a cadence of 48
s, but the NIR-band light curves present much greater scatter. We also observed
another transit of WASP-44 b by using a Gunn-r filter and telescope
defocussing, with a scatter of 0.37 mmag per point and an observing cadence
around 135 s. We used these data to improve measurements of the time of
mid-transit and the physical properties of the system. In particular, we
improved the radius measurements of the star and planet by factors of 3 and 4,
respectively. We find that the radius of WASP-44 b is 1.002 R_Jup, which is
slightly smaller than previously thought and differs from that expected for a
core-free planet. In addition, with the help of a synthetic spectrum, we
investigated the theoretically-predicted variation of the planetary radius as a
function of wavelength, covering the range 370-2440 nm. We can rule out extreme
variations at optical wavelengths, but unfortunately our data are not precise
enough (especially in the NIR bands) to differentiate between the theoretical
spectrum and a radius which does not change with wavelength.Comment: 13 pages, 6 figures, to appear in Monthly Notices of the Royal
Astronomical Societ
- …
