2,353 research outputs found

    A high bandwidth quantum repeater

    Full text link
    We present a physical- and link-level design for the creation of entangled pairs to be used in quantum repeater applications where one can control the noise level of the initially distributed pairs. The system can tune dynamically, trading initial fidelity for success probability, from high fidelity pairs (F=0.98 or above) to moderate fidelity pairs. The same physical resources that create the long-distance entanglement are used to implement the local gates required for entanglement purification and swapping, creating a homogeneous repeater architecture. Optimizing the noise properties of the initially distributed pairs significantly improves the rate of generating long-distance Bell pairs. Finally, we discuss the performance trade-off between spatial and temporal resources.Comment: 5 page

    Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole

    Full text link
    The center-of-mass energy of two particles colliding near the horizon of a maximally rotating black hole can be arbitrarily high if the angular momentum of either of the incident particles is fine-tuned, which we call a critical particle. We study particle emission from such high-energy collision and reaction in the equatorial plane fully analytically. We show that the unconditional upper limit of the energy of the emitted particle is given by 218.6% of that of the injected critical particle, irrespective of the details of the reaction and this upper limit can be realized for massless particle emission. The upper limit of the energy extraction efficiency for this emission as a collisional Penrose process is given by 146.6%, which can be realized in the collision of two massive particles with optimized mass ratio. Moreover, we analyze perfectly elastic collision, Compton scattering, and pair annihilation and show that net positive energy extraction is really possible for these three reactions. The Compton scattering is most efficient among them and the efficiency can reach 137.2%. On the other hand, our result is qualitatively consistent with the earlier claim that the mass and energy of the emitted particle are at most of order the total energy of the injected particles and hence we can observe neither super-heavy nor super-energetic particles.Comment: 22 pages, 3 figures, typos corrected, reference updated, accepted for publication in Physical Review D, typos correcte

    Local Probabilistic Decoding of a Quantum Code

    Full text link
    flip is an extremely simple and maximally local classical decoder which has been used to great effect in certain classes of classical codes. When applied to quantum codes there exist constant-weight errors (such as half of a stabiliser) which are uncorrectable for this decoder, so previous studies have considered modified versions of flip, sometimes in conjunction with other decoders. We argue that this may not always be necessary, and present numerical evidence for the existence of a threshold for flip when applied to the looplike syndromes of a three-dimensional toric code on a cubic lattice. This result can be attributed to the fact that the lowest-weight uncorrectable errors for this decoder are closer (in terms of Hamming distance) to correctable errors than to other uncorrectable errors, and so they are likely to become correctable in future code cycles after transformation by additional noise. Introducing randomness into the decoder can allow it to correct these "uncorrectable" errors with finite probability, and for a decoding strategy that uses a combination of belief propagation and probabilistic flip we observe a threshold of ∼5.5%\sim5.5\% under phenomenological noise. This is comparable to the best known threshold for this code (∼7.1%\sim7.1\%) which was achieved using belief propagation and ordered statistics decoding [Higgott and Breuckmann, 2022], a strategy with a runtime of O(n3)O(n^3) as opposed to the O(n)O(n) (O(1)O(1) when parallelised) runtime of our local decoder. We expect that this strategy could be generalised to work well in other low-density parity check codes, and hope that these results will prompt investigation of other previously overlooked decoders.Comment: 10 pages + 1 page appendix, 7 figures. Comments welcome.; v3 Published versio

    SU(N)-symmetric quasi-probability distribution functions

    Full text link
    We present a set of N-dimensional functions, based on generalized SU(N)-symmetric coherent states, that represent finite-dimensional Wigner functions, Q-functions, and P-functions. We then show the fundamental properties of these functions and discuss their usefulness for analyzing N-dimensional pure and mixed quantum states.Comment: 16 pages, 2 figures. Updated text to reflect referee comment

    Weak non-linearities and cluster states

    Full text link
    We propose a scalable approach to building cluster states of matter qubits using coherent states of light. Recent work on the subject relies on the use of single photonic qubits in the measurement process. These schemes have a low initial success probability and low detector efficiencies cause a serious blowup in resources. In contrast, our approach uses continuous variables and highly efficient measurements. We present a two-qubit scheme, with a simple homodyne measurement system yielding an entangling operation with success probability 1/2. Then we extend this to a three-qubit interaction, increasing this probability to 3/4. We discuss the important issues of the overhead cost and the time scaling, showing how these can be vastly improved with access to this new probability range.Comment: 5 pages, to appear in Phys. Rev.

    Modified TAP equations for the SK spin glass

    Full text link
    The stability of the TAP mean field equations is reanalyzed with the conclusion that the exclusive reason for the breakdown at the spin glass instability is an inconsistency for the value of the local susceptibility. A new alternative approach leads to modified equations which are in complete agreement with the original ones above the instability. Essentially altered results below the instability are presented and the consequences for the dynamical mean field equations are discussed.Comment: 7 pages, 2 figures, final revised version to appear in Europhys. Let

    Efficient optical quantum information processing

    Full text link
    Quantum information offers the promise of being able to perform certain communication and computation tasks that cannot be done with conventional information technology (IT). Optical Quantum Information Processing (QIP) holds particular appeal, since it offers the prospect of communicating and computing with the same type of qubit. Linear optical techniques have been shown to be scalable, but the corresponding quantum computing circuits need many auxiliary resources. Here we present an alternative approach to optical QIP, based on the use of weak cross-Kerr nonlinearities and homodyne measurements. We show how this approach provides the fundamental building blocks for highly efficient non-absorbing single photon number resolving detectors, two qubit parity detectors, Bell state measurements and finally near deterministic control-not (CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum computation; References update

    Qudit Quantum State Tomography

    Get PDF
    Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quantum device. It allows the complete reconstruction of the state produced from a given input into the device. From this reconstructed density matrix, relevant quantum information quantities such as the degree of entanglement and entropy can be calculated. Generally orthogonal measurements have been discussed for this tomographic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes. First we show how non-orthogonal measurement allow the reconstruction of the state of the system provided the measurements span the Hilbert space. We then detail how quantum state tomography can be performed for multi qudits with a specific example illustrating how to achieve this in one and two qutrit systems.Comment: 6 pages, 4 figures, submitted to PR

    Modified Thouless-Anderson-Palmer equations for the Sherrington-Kirkpatrick spin glass: Numerical solutions

    Full text link
    For large but finite systems the static properties of the infinite ranged Sherrington-Kirkpatrick model are numerically investigated in the entire the glass regime. The approach is based on the modified Thouless-Anderson-Palmer equations in combination with a phenomenological relaxational dynamics used as a numerical tool. For all temperatures and all bond configurations stable and meta stable states are found. Following a discussion of the finite size effects, the static properties of the state of lowest free energy are presented in the presence of a homogeneous magnetic field for all temperatures below the spin glass temperature. Moreover some characteristic features of the meta stable states are presented. These states exist in finite temperature intervals and disappear via local saddle node bifurcations. Numerical evidence is found that the excess free energy of the meta stable states remains finite in the thermodynamic limit. This implies a the `multi-valley' structure of the free energy on a sub-extensive scale.Comment: Revtex 10 pages 13 figures included, submitted to Phys.Rev.B. Shortend and improved version with additional numerical dat
    • …
    corecore