19,326 research outputs found
Brain amyloid in preclinical Alzheimer\u27s disease is associated with increased driving risk
INTRODUCTION: Postmortem studies suggest that fibrillar brain amyloid places people at higher risk for hazardous driving in the preclinical stage of Alzheimer's disease (AD). METHODS: We administered driving questionnaires to 104 older drivers (19 AD, 24 mild cognitive impairment, and 61 cognitive normal) who had a recent (18)F-florbetapir positron emission tomography scan. We examined associations of amyloid standardized uptake value ratios with driving behaviors: traffic violations or accidents in the past 3 years. RESULTS: The frequency of violations or accidents was curvilinear with respect to standardized uptake value ratios, peaking around a value of 1.1 (model r(2) = 0.10, P = .002); moreover, this relationship was evident for the cognitively normal participants. DISCUSSION: We found that driving risk is strongly related to accumulating amyloid on positron emission tomography, and that this trend is evident in the preclinical stage of AD. Brain amyloid burden may in part explain the increased crash risk reported in older adults
Young\u27s modulus of [111] germanium nanowires
This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germaniumnanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior
A computationally efficient inorganic atmospheric aerosol phase equilibrium model (UHAERO)
A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model also computes deliquescence and crystallization behavior without any a priori specification of the relative humidities of deliquescence or crystallization. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition
Electrons in Dry DNA from Density Functional Calculations
The electronic structure of an infinite poly-guanine - poly-cytosine DNA
molecule in its dry A-helix structure is studied by means of density-functional
calculations. An extensive study of 30 nucleic base pairs is performed to
validate the method. The electronic energy bands of DNA close to the Fermi
level are then analyzed in order to clarify the electron transport properties
in this particularly simple DNA realization, probably the best suited candidate
for conduction. The energy scale found for the relevant band widths, as
compared with the energy fluctuations of vibrational or genetic-sequence
origin, makes highly implausible the coherent transport of electrons in this
system. The possibility of diffusive transport with sub-nanometer mean free
paths is, however, still open. Information for model Hamiltonians for
conduction is provided.Comment: 8 pages, 4 figure
New Perspective on Galaxy Clustering as a Cosmological Probe: General Relativistic Effects
We present a general relativistic description of galaxy clustering in a FLRW
universe. The observed redshift and position of galaxies are affected by the
matter fluctuations and the gravity waves between the source galaxies and the
observer, and the volume element constructed by using the observables differs
from the physical volume occupied by the observed galaxies. Therefore, the
observed galaxy fluctuation field contains additional contributions arising
from the distortion in observable quantities and these include tensor
contributions as well as numerous scalar contributions. We generalize the
linear bias approximation to relate the observed galaxy fluctuation field to
the underlying matter distribution in a gauge-invariant way. Our full formalism
is essential for the consistency of theoretical predictions. As our first
application, we compute the angular auto correlation of large-scale structure
and its cross correlation with CMB temperature anisotropies. We comment on the
possibility of detecting primordial gravity waves using galaxy clustering and
discuss further applications of our formalism.Comment: 10 pages, 2 figures, accepted for publication in Physical Review
Complete Treatment of Galaxy Two-Point Statistics: Gravitational Lensing Effects and Redshift-Space Distortions
We present a coherent theoretical framework for computing gravitational
lensing effects and redshift-space distortions in an inhomogeneous universe and
investigate their impacts on galaxy two-point statistics. Adopting the
linearized FRW metric, we derive the gravitational lensing and the generalized
Sachs-Wolfe effects that include the weak lensing distortion, magnification,
and time delay effects, and the redshift-space distortion, Sachs-Wolfe, and
integrated Sachs-Wolfe effects, respectively. Based on this framework, we first
compute their effects on observed source fluctuations, separating them as two
physically distinct origins: the volume effect that involves the change of
volume and is always present in galaxy two-point statistics, and the source
effect that depends on the intrinsic properties of source populations. Then we
identify several terms that are ignored in the standard method, and we compute
the observed galaxy two-point statistics, an ensemble average of all the
combinations of the intrinsic source fluctuations and the additional
contributions from the gravitational lensing and the generalized Sachs-Wolfe
effects. This unified treatment of galaxy two-point statistics clarifies the
relation of the gravitational lensing and the generalized Sachs-Wolfe effects
to the metric perturbations and the underlying matter fluctuations. For near
future dark energy surveys, we compute additional contributions to the observed
galaxy two-point statistics and analyze their impact on the anisotropic
structure. Thorough theoretical modeling of galaxy two-point statistics would
be not only necessary to analyze precision measurements from upcoming dark
energy surveys, but also provide further discriminatory power in understanding
the underlying physical mechanisms.Comment: 20 pages, 5 figures, Fig.4 corrected, appendix added, accepted for
publication in Physical Review
A new inorganic atmospheric aerosol phase equilibrium model (UHAERO)
A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition
Isotropic three-dimensional gap in the iron-arsenide superconductor LiFeAs from directional heat transport measurements
The thermal conductivity k of the iron-arsenide superconductor LiFeAs (Tc ~
18K) was measured in single crystals at temperatures down to T~50mK and in
magnetic fields up to H=17T, very close to the upper critical field Hc2~18T.
For both directions of the heat current, parallel and perpendicular to the
tetragonal c-axis, a negligible residual linear term k/T is found as T ->0,
revealing that there are no zero-energy quasiparticles in the superconducting
state. The increase in k with magnetic field is the same for both current
directions and it follows closely the dependence expected for an isotropic
superconducting gap. There is no evidence of multi-band character, whereby the
gap would be different on different Fermi-surface sheets. These findings show
that the superconducting gap in LiFeAs is isotropic in 3D, without nodes or
deep minima anywhere on the Fermi surface. Comparison with other iron-pnictide
superconductors suggests that a nodeless isotropic gap is a common feature at
optimal doping (maximal Tc).Comment: 4 pages, 3 figure
An Experimental Platform for Pulsed-Power Driven Magnetic Reconnection
We describe a versatile pulsed-power driven platform for magnetic
reconnection experiments, based on exploding wire arrays driven in parallel
[Suttle, L. G. et al. PRL, 116, 225001]. This platform produces inherently
magnetised plasma flows for the duration of the generator current pulse (250
ns), resulting in a long-lasting reconnection layer. The layer exists for long
enough to allow evolution of complex processes such as plasmoid formation and
movement to be diagnosed by a suite of high spatial and temporal resolution
laser-based diagnostics. We can access a wide range of magnetic reconnection
regimes by changing the wire material or moving the electrodes inside the wire
arrays. We present results with aluminium and carbon wires, in which the
parameters of the inflows and the layer which forms are significantly
different. By moving the electrodes inside the wire arrays, we change how
strongly the inflows are driven. This enables us to study both symmetric
reconnection in a range of different regimes, and asymmetric reconnection.Comment: 14 pages, 9 figures. Version revised to include referee's comments.
Submitted to Physics of Plasma
- …
