3,037 research outputs found

    On the optimal contact potential of proteins

    Full text link
    We analytically derive the lower bound of the total conformational energy of a protein structure by assuming that the total conformational energy is well approximated by the sum of sequence-dependent pairwise contact energies. The condition for the native structure achieving the lower bound leads to the contact energy matrix that is a scalar multiple of the native contact matrix, i.e., the so-called Go potential. We also derive spectral relations between contact matrix and energy matrix, and approximations related to one-dimensional protein structures. Implications for protein structure prediction are discussed.Comment: 5 pages, text onl

    Properties of contact matrices induced by pairwise interactions in proteins

    Full text link
    The total conformational energy is assumed to consist of pairwise interaction energies between atoms or residues, each of which is expressed as a product of a conformation-dependent function (an element of a contact matrix, C-matrix) and a sequence-dependent energy parameter (an element of a contact energy matrix, E-matrix). Such pairwise interactions in proteins force native C-matrices to be in a relationship as if the interactions are a Go-like potential [N. Go, Annu. Rev. Biophys. Bioeng. 12. 183 (1983)] for the native C-matrix, because the lowest bound of the total energy function is equal to the total energy of the native conformation interacting in a Go-like pairwise potential. This relationship between C- and E-matrices corresponds to (a) a parallel relationship between the eigenvectors of the C- and E-matrices and a linear relationship between their eigenvalues, and (b) a parallel relationship between a contact number vector and the principal eigenvectors of the C- and E-matrices; the E-matrix is expanded in a series of eigenspaces with an additional constant term, which corresponds to a threshold of contact energy that approximately separates native contacts from non-native ones. These relationships are confirmed in 182 representatives from each family of the SCOP database by examining inner products between the principal eigenvector of the C-matrix, that of the E-matrix evaluated with a statistical contact potential, and a contact number vector. In addition, the spectral representation of C- and E-matrices reveals that pairwise residue-residue interactions, which depends only on the types of interacting amino acids but not on other residues in a protein, are insufficient and other interactions including residue connectivities and steric hindrance are needed to make native structures the unique lowest energy conformations.Comment: Errata in DOI:10.1103/PhysRevE.77.051910 has been corrected in the present versio

    High-pressure structural investigation of several zircon-type orthovanadates

    Full text link
    Room temperature angle-dispersive x-ray diffraction measurements on zircon-type EuVO4, LuVO4, and ScVO4 were performed up to 27 GPa. In the three compounds we found evidence of a pressure-induced structural phase transformation from zircon to a scheelite-type structure. The onset of the transition is near 8 GPa, but the transition is sluggish and the low- and high-pressure phases coexist in a pressure range of about 10 GPa. In EuVO4 and LuVO4 a second transition to a M-fergusonite-type phase was found near 21 GPa. The equations of state for the zircon and scheelite phases are also determined. Among the three studied compounds, we found that ScVO4 is less compressible than EuVO4 and LuVO4, being the most incompressible orthovanadate studied to date. The sequence of structural transitions and compressibilities are discussed in comparison with other zircon-type oxides.Comment: 34 pages, 2 Tables, 11 Figure

    Lee surface flow phenomena over space shuttle at large angles of attack at M sub infinity equal 6

    Get PDF
    Surface pressure and heat transfer, flow separation, flow field, and oil flow patterns on the leeward side of a space shuttle orbiter model are investigated at a free stream Mach number of 6. The free stream Reynolds numbers are between 1.64 times 10 to the 7th power and 1.31 times 10 to the 8th power per meter, and the angle of attack is varied between 0 deg and 40 deg for the present experiments. The stagnation temperatures for the tests are approximately 500 K and the wall temperature is maintained at 290 K. Existing numerical methods of three-dimensional inviscid supersonic flow theory and compressible boundary layer theory are used to predict the present experimental measurements. Results of the present tests indicate two distinct types of flow separation and surface peak heating depending on the angle of attack
    corecore