674 research outputs found
Legal Procedure - Collateral Estoppel Doctrine - Application of Collateral Estoppel from an Administrative Hearing to a Civil Action
The Pennsylvania Supreme Court held that, given the fast and informal nature of unemployment compensation proceedings, as well as the economic risk in those actions, a factual finding made during an unemployment compensation hearing should not be afforded preclusive effect in a subsequent civil action brought by the same employee.
Rue v. K-Mart Corp., 713 A.2d 82 (Pa. 1998)
Structural investigations of fibers and films of poly(p-phenylene benzobisthiazole).
Polymer Science and EngineeringDoctor of Philosophy (PhD
Computer program documentation: ISOCLS iterative self-organizing clustering program, program C094
The author has identified the following significant results. This program implements an algorithm which, ideally, sorts a given set of multivariate data points into similar groups or clusters. The program is intended for use in the evaluation of multispectral scanner data; however, the algorithm could be used for other data types as well. The user may specify a set of initial estimated cluster means to begin the procedure, or he may begin with the assumption that all the data belongs to one cluster. The procedure is initiatized by assigning each data point to the nearest (in absolute distance) cluster mean. If no initial cluster means were input, all of the data is assigned to cluster 1. The means and standard deviations are calculated for each cluster
Quantum incompressibility of a falling Rydberg atom, and a gravitationally-induced charge separation effect in superconducting systems
Freely falling point-like objects converge towards the center of the Earth.
Hence the gravitational field of the Earth is inhomogeneous, and possesses a
tidal component. The free fall of an extended quantum object such as a hydrogen
atom prepared in a high principal-quantum-number stretch state, i.e., a
circular Rydberg atom, is predicted to fall more slowly that a classical
point-like object, when both objects are dropped from the same height from
above the Earth. This indicates that, apart from "quantum jumps," the atom
exhibits a kind of "quantum incompressibility" during free fall in
inhomogeneous, tidal gravitational fields like those of the Earth. A
superconducting ring-like system with a persistent current circulating around
it behaves like the circular Rydberg atom during free fall. Like the electronic
wavefunction of the freely falling atom, the Cooper-pair wavefunction is
"quantum incompressible." The ions of the ionic lattice of the superconductor,
however, are not "quantum incompressible," since they do not possess a globally
coherent quantum phase. The resulting difference during free fall in the
response of the nonlocalizable Cooper pairs of electrons and the localizable
ions to inhomogeneous gravitational fields is predicted to lead to a charge
separation effect, which in turn leads to a large repulsive Coulomb force that
opposes the convergence caused by the tidal, attractive gravitational force on
the superconducting system. A "Cavendish-like" experiment is proposed for
observing the charge separation effect induced by inhomogeneous gravitational
fields in a superconducting circuit. This experiment would demonstrate the
existence of a novel coupling between gravity and electricity via
macroscopically coherent quantum matter.Comment: `2nd Vienna Symposium for the Foundations of Modern Physics'
Festschrift MS for Foundations of Physic
Using Abrupt Changes in Magnetic Susceptibility within Type-II Superconductors to Explore Global Decoherence Phenomena
A phenomenon of a periodic staircase of macroscopic jumps in the admitted
magnetic field has been observed, as the magnitude of an externally applied
magnetic field is smoothly increased or decreased upon a superconducting (SC)
loop of type II niobium-titanium wire which is coated with a
non-superconducting layer of copper. Large temperature spikes were observed to
occur simultaneously with the jumps, suggesting brief transitions to the normal
state, caused by en masse motions of Abrikosov vortices. An experiment that
exploits this phenomenon to explore the global decoherence of a large
superconducting system will be discussed, and preliminary data will be
presented. Though further experimentation is required to determine the actual
decoherence rate across the superconducting system, multiple classical
processes are ruled out, suggesting that jumps in magnetic flux are fully
quantum mechanical processes which may correspond to large group velocities
within the global Cooper pair wavefunction.Comment: 13 pages, 4 figures, part of proceedings for FQMT 2011 conference in
Prague, Czech Republi
Can a charged ring levitate a neutral, polarizable object? Can Earnshaw's Theorem be extended to such objects?
Stable electrostatic levitation and trapping of a neutral, polarizable object
by a charged ring is shown to be theoretically impossible. Earnshaw's Theorem
precludes the existence of such a stable, neutral particle trap.Comment: 11 pages, 1 figur
Differential Effects of MitoVitE, α-Tocopherol and Trolox on Oxidative Stress, Mitochondrial Function and Inflammatory Signalling Pathways in Endothelial Cells Cultured under Conditions Mimicking Sepsis
Funding: This research was funded by The British Journal of Anaesthesia/Royal College of Anaesthetists (PhD studentship to Beverley Minter). Acknowledgments: We are very grateful to Professor M.P. Murphy, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, UK for the generous gift of MitoVitE used in all the experiments, without which this work would not have been possible.Peer reviewedPublisher PD
- …