682 research outputs found
Frank Norris, Decadent Humorist: The 1897 Version of The Joyous Miracle
The once-popular Joyous Miracle is now a distinctly minor short story in the canon of Frank Norris. First given separate publication in England and the United States as a Christmas giftbook in 1906, it was then being recycled for its earning potential as a seasonal offering; for it had already appeared as an 1898 Christmas piece in McClure\u27s Magazine under the title Miracle Joyeux. Norris\u27s contemporaries held it in high regard: for example, the New Orleans Times-Democrat found the McClure\u27s version a charming sketch and praised its author for succeeding with a difficult-to-handle theme-difficult because its featured character was the son of God, and therefore a risky venture in fiction. Later, in 1909 when the California journalist Will Irwin wrote his introduction to a collection of Norris\u27s short stories entitled The Third Circle, he ranked it with the title story and The House with the Blinds as among Norris\u27s most impressive early efforts. Since 1909, however, no one has characterized it thus; nonspecialists who teach McTeague and A Deal in Wheat are most likely not even aware of its existence
Black hole evaporation with separated fermions
In models with a low quantum gravity scale, a well-motivated reason to expect
quark and lepton fields are localized but physically separated is to avoid
proton decay. This could happen in a ``fat-brane'' or in an additional,
orthogonal 1/TeV sized dimension in which the gauge and Higgs fields live
throughout. Black holes with masses of order the quantum gravity scale are
therefore expected to evaporate non-universally, preferentially radiating
directly into quarks or leptons but not both. Should black holes be copiously
produced at a future hadron collider, we find the ratio of final state jets to
charged leptons to photons is 113:8:1, which differs from previous analyses
that assumed all standard model fields live at the same point in the extra
dimensional space.Comment: 5 pages, REVTe
The Higgs Sector in a Extension of the MSSM
We consider the Higgs sector in an extension of the MSSM with extra SM
singlets, involving an extra gauge symmetry, in which the
domain-wall problem is avoided and the effective parameter is decoupled
from the new gauge boson mass. The model involves a rich Higgs
structure very different from that of the MSSM. In particular, there are large
mixings between Higgs doublets and the SM singlets, significantly affecting the
Higgs spectrum, production cross sections, decay modes, existing exclusion
limits, and allowed parameter range. Scalars considerably lighter than the LEP2
bound (114 GeV) are allowed, and the range is both allowed
and theoretically favored. Phenomenologically, we concentrate our study on the
lighter (least model-dependent, yet characteristic) Higgs particles with
significant SU(2)-doublet components to their wave functions, for the case of
no explicit CP violation in the Higgs sector. We consider their spectra,
including the dominant radiative corrections to their masses from the top/stop
loop. We computed their production cross sections and reexamine the existing
exclusion limits at LEP2. We outline the searching strategy for some
representative scenarios at a future linear collider. We emphasize that
gaugino, Higgsino, and singlino decay modes are indicative of extended models
and have been given little attention. We present a comprehensive list of model
scenarios in the Appendices.Comment: 49 pages, 17 figure
Proximity effect in Nb-Mo layered films: Transition temperature and critical current dependence on period
The behavior of the transition temperature and critical current density for a
Mo/Nb repeated bilayer system as a function of the number of periods was
explored. The measured values of the transition temperature are compared to the
theoretical predictions for the proximity effect in the dirty limit. We find
that the transition temperature does not decrease as the number of periods
increase. In addition, inductive critical current density measurements also
show a scaling that indicates the superconductivity properties are not
dependent on the number of bilayers.Comment: 13 pages, 6 figures, to be published Journal of Applied Physic
Gaugephobic Higgs Signals at the LHC
The Gaugephobic Higgs model provides an interpolation between three different
models of electroweak symmetry breaking: Higgsless models, Randall-Sundrum
models, and the Standard Model. At parameter points between the extremes,
Standard Model Higgs signals are present at reduced rates, and Higgsless
Kaluza-Klein excitations are present with shifted masses and couplings, as well
as signals from exotic quarks necessary to protect the Zbb coupling. Using a
new implementation of the model in SHERPA, we show the LHC signals which
differentiate the generic Gaugephobic Higgs model from its limiting cases.
These are all signals involving a Higgs coupling to a Kaluza-Klein gauge boson
or quark. We identify the clean signal mediated by a
Kaluza-Klein W, which can be present at large rates and is enhanced for even
Kaluza-Klein numbers. Due to the very hard lepton coming from the W decay, this
signature has little background, and provides a better discovery channel for
the Higgs than any of the Standard Model modes, over its entire mass range. A
Higgs radiated from new heavy quarks also has large rates, but is much less
promising due to very high multiplicity final states.Comment: 16 pages, 8 figure
Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data.
An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them
Young adult longitudinal patterns of marijuana use among US National samples of 12th grade frequent marijuana users: a repeatedâ measures latent class analysis
Background and AimsLongâ term frequent marijuana use is associated with significant negative outcomes, yet little is known about the longitudinal course of marijuana use among those who start frequent use during adolescence. Objectives are (a) to identify latent patterns of withinâ person marijuana use from ages 19â 30Â years among 12th graders reporting frequent marijuana use, (b) to examine if membership in identified patterns has changed across historical time and (c) to examine if key covariates differentiate class membership.Design, Setting, ParticipantsLongitudinal, national US panel data from 4423 individuals [53.4% of the eligible sample; 2744 (62%) males] who reported frequent marijuana use in 12th grade (modal age 18Â years; senior year cohorts 1976â 2006) followed biennially from ages 19/20 to 29/30.MeasurementsSelfâ reported past 30â day marijuana use (frequent use defined as use on 20+ occasions), demographics, college graduation, marriage and parenthood.FindingsRepeatedâ measures latent class analysis (RMLCA) identified five latent classes of past 30â day marijuana use from ages 19/20 to 29/30: continued frequent users (estimated membership 23.4%); frequent to nonâ frequent users (15.5%); consistent nonâ frequent users (18.4%); nonâ frequent users to discontinuers (19.5%); and discontinuers (23.2%). In multivariable models, membership in the highestâ risk latent class (continued frequent users) versus one or more of the lowerâ risk latent classes was more likely for recent cohorts (PÂ =Â 0.038 to <0.001), as well as those who did not marry (PÂ =Â 0.039 to <Â 0.001) or become parents (PÂ =Â 0.001) by modal age 29/30.ConclusionsNearly one in four 12th grade (modal age 18Â years) frequent marijuana users in the US continues to report high frequency use to age 30; the proportion continuing high frequency use across young adulthood has increased among more recent cohorts.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149218/1/add14548_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149218/2/add14548.pd
Searching for the light dark gauge boson in GeV-scale experiments
We study current constraints and search prospects for a GeV scale vector
boson at a range of low energy experiments. It couples to the Standard Model
charged particles with a strength <= 10^-3 to 10^-4 of that of the photon. The
possibility of such a particle mediating dark matter self-interactions has
received much attention recently. We consider searches at low energy high
luminosity colliders, meson decays, and fixed target experiments. Based on
available data, searches both at colliders and in meson decays can discover or
exclude such a scenario if the coupling strength is on the larger side. We
emphasize that a dedicated fixed target experiment has a much better potential
in searching for such a gauge boson, and outline the desired properties of such
an experiment. Two different optimal designs should be implemented to cover the
range of coupling strength 10^-3 to 10^-5, and < 10^-5 of the photon,
respectively. We also briefly comment on other possible ways of searching for
such a gauge boson.Comment: 33 pages, 5 figures; v2: corrected discussion of Upsilon decays,
updates to discussion of fixed-target experiments and QED constraints,
numerous minor changes, references added; v3: typo corrected relative to the
JHEP published versio
Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics
A new type of radiation detector, a p-type modified electrode germanium
diode, is presented. The prototype displays, for the first time, a combination
of features (mass, energy threshold and background expectation) required for a
measurement of coherent neutrino-nucleus scattering in a nuclear reactor
experiment. The device hybridizes the mass and energy resolution of a
conventional HPGe coaxial gamma spectrometer with the low electronic noise and
threshold of a small x-ray semiconductor detector, also displaying an intrinsic
ability to distinguish multiple from single-site particle interactions. The
present performance of the prototype and possible further improvements are
discussed, as well as other applications for this new type of device in
neutrino and astroparticle physics (double-beta decay, neutrino magnetic moment
and WIMP searches).Comment: submitted to Phys. Rev.
- …