3,133 research outputs found
Effects of Violent Video Game Exposure on Aggressive Behavior, Aggressive thought Accessibility, and Aggressive Affect among Adults with and without Autism Spectrum Disorder
Recent mass shootings have prompted the idea among some members of the public that exposure to violent video games can have a pronounced effect on individuals with autism spectrum disorder (ASD). Empirical evidence for or against this claim currently is absent. To address this issue, adults with and without ASD were assigned to play a violent or nonviolent version of a customized first-person shooter video game, after which responses on three aggression-related outcome variables (aggressive behavior, aggressive thought accessibility, and aggressive affect) were assessed. Results showed strong evidence that adults with ASD are not differentially affected by acute exposure to violent video games compared to typically developing adults. Moreover, model comparisons showed modest evidence against any effect of violent game content whatsoever. Findings from the current experiment suggest that societal concerns over whether violent game exposure has a unique effect on adults with autism are not supported by evidence
Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations
An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that are due to direct emissions from primary sources, confirming that these compounds are principally formed by atmospheric chemical reactions
Molecular Marker Analysis as a Guide to the Sources of Fine Organic Aerosols
The molecular composition of fine particulate (D_p ≥ 2 µm) organic aerosol emissions from the most important sources in the Los Angeles area has been determined. Likewise, ambient concentration patterns for more than 80 single organic compounds have been measured at four urban sites (West Los Angeles, Downtown Los Angeles, Pasadena, and Rubidoux) and at one remote offshore site (San Nicolas Island). It has been found that cholesterol serves as a marker compound for emissions from charbroilers and other meat cooking operations. Vehicular exhaust being emitted from diesel and gasoline powered engines can be traced in the Los Angeles atmosphere using fossil petroleum marker compounds such as steranes and pentacyclic triterpanes (e.g., hopanes). Biogenic fine particle emission sources such as plant fragments abraded from leaf surfaces by wind and weather can be traced in the urban atmosphere. Using distinct and specific source organic tracers or assemblages of organic compounds characteristic for the sources considered it is possible to estimate the influence of different source types at any urban site where atmospheric data are available
Right ventricular outflow tract velocity time integral-to-pulmonary artery systolic pressure ratio: a non-invasive metric of pulmonary arterial compliance differs across the spectrum of pulmonary hypertension.
Pulmonary arterial compliance (PAC), invasively assessed by the ratio of stroke volume to pulmonary arterial (PA) pulse pressure, is a sensitive marker of right ventricular (RV)-PA coupling that differs across the spectrum of pulmonary hypertension (PH) and is predictive of outcomes. We assessed whether the echocardiographically derived ratio of RV outflow tract velocity time integral to PA systolic pressure (RVOT-VTI/PASP) (a) correlates with invasive PAC, (b) discriminates heart failure with preserved ejection-associated PH (HFpEF-PH) from pulmonary arterial hypertension (PAH), and (c) is associated with functional capacity. We performed a retrospective cohort study of patients with PAH (n = 70) and HFpEF-PH (n = 86), which was further dichotomized by diastolic pressure gradient (DPG) into isolated post-capillary PH (DPG \u3c 7 mmHg; Ipc-PH, n = 54), and combined post- and pre-capillary PH (DPG ≥ 7 mm Hg; Cpc-PH, n = 32). Of the 156 patients, 146 had measurable RVOT-VTI or PASP and were included in further analysis. RVOT-VTI/PASP correlated with invasive PAC overall (ρ = 0.61, P \u3c 0.001) and for the PAH (ρ = 0.38, P = 0.002) and HFpEF-PH (ρ = 0.63, P \u3c 0.001) groups individually. RVOT-VTI/PASP differed significantly across the PH spectrum (PAH: 0.13 [0.010-0.25] vs. Cpc-PH: 0.20 [0.12-0.25] vs. Ipc-PH: 0.35 [0.22-0.44]; P \u3c 0.001), distinguished HFpEF-PH from PAH (AUC = 0.72, 95% CI = 0.63-0.81) and Cpc-PH from Ipc-PH (AUC = 0.78, 95% CI = 0.68-0.88), and remained independently predictive of 6-min walk distance after multivariate analysis (standardized β-coefficient = 27.7, 95% CI = 9.2-46.3; P = 0.004). Echocardiographic RVOT-VTI/PASP is a novel non-invasive metric of PAC that differs across the spectrum of PH. It distinguishes the degree of pre-capillary disease within HFpEF-PH and is predictive of functional capacity
Digital libraries for the preservation of research methods and associated artifacts
New digital artifacts are emerging in data-intensive science. For example, scientific workflows are executable descriptions of scientific procedures that define the sequence of computational steps in an automated data analysis, supporting reproducible research and the sharing and replication of best-practice and know-how through reuse. Workflows are specified at design time and interpreted through their execution in a variety of situations, environments, and domains. Hence it is essential to preserve both their static and dynamic aspects, along with the research context in which they are used. To achieve this, we propose the use of multidimensional digital objects (Research Objects) that aggregate the resources used and/or produced in scientific investigations, including workflow models, provenance of their executions, and links to the relevant associated resources, along with the provision of technological support for their preservation and efficient retrieval and reuse. In this direction, we specified a software architecture for the design and implementation of a Research Object preservation system, and realized this architecture with a set of services and clients, drawing together practices in digital libraries, preservation systems, workflow management, social networking and Semantic Web technologies. In this paper, we describe the backbone system of this realization, a digital library system built on top of dLibra
M2 pyruvate kinase provides a mechanism for nutrient sensing and regulation of cell proliferation
We show that the M2 isoform of pyruvate kinase (M2PYK) exists in equilibrium between monomers and tetramers regulated by allosteric binding of naturally occurring small-molecule metabolites. Phenylalanine stabilizes an inactive T-state tetrameric conformer and inhibits M2PYK with an IC(50) value of 0.24 mM, whereas thyroid hormone (triiodo-l-thyronine, T3) stabilizes an inactive monomeric form of M2PYK with an IC(50) of 78 nM. The allosteric activator fructose-1,6-bisphosphate [F16BP, AC(50) (concentration that gives 50% activation) of 7 μM] shifts the equilibrium to the tetrameric active R-state, which has a similar activity to that of the constitutively fully active isoform M1PYK. Proliferation assays using HCT-116 cells showed that addition of inhibitors phenylalanine and T3 both increased cell proliferation, whereas addition of the activator F16BP reduced proliferation. F16BP abrogates the inhibitory effect of both phenylalanine and T3, highlighting a dominant role of M2PYK allosteric activation in the regulation of cancer proliferation. X-ray structures show constitutively fully active M1PYK and F16BP-bound M2PYK in an R-state conformation with a lysine at the dimer-interface acting as a peg in a hole, locking the active tetramer conformation. Binding of phenylalanine in an allosteric pocket induces a 13° rotation of the protomers, destroying the peg-in-hole R-state interface. This distinct T-state tetramer is stabilized by flipped out Trp/Arg side chains that stack across the dimer interface. X-ray structures and biophysical binding data of M2PYK complexes explain how, at a molecular level, fluctuations in concentrations of amino acids, thyroid hormone, and glucose metabolites switch M2PYK on and off to provide the cell with a nutrient sensing and growth signaling mechanism
Contribution of primary aerosol emissions from vegetation-derived sources to fine particle concentrations in Los Angeles
Field measurements of the n-alkanes present in fine atmospheric aerosols show a predominance of odd carbon numbered higher molecular weight homologues (C_(27)–C_(33)) that is characteristic of plant waxes. Utilizing a local leaf wax n-alkane profile in conjunction with an air quality model, it is estimated that, at most, 0.2–1.0 μg m^(−3) of the airborne fine particulate matter (d_p < 2.1 μm) present in the Los Angeles basin could originate from urban vegetative detritus; this corresponds to approximately 1–3% of the total ambient fine aerosol burden. However, some of the observed vegetation aerosol fingerprint in the Los Angeles air may be due in part to emissions from food cooking rather than plant detritus. Seasonal trends in the ambient n-alkane patterns are examined to seek further insight into the relative importance of anthropogenic versus natural sources of vegetation-derived fine particulate matter
Visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park: Properties observed by high resolution gas chromatography
Fine particle and total airborne particle samples were collected during August 1989 within the Grand Canyon (Indian Gardens (IG)) and on its south rim (Hopi Point (HP)) to define summertime organic aerosol concentration and composition as a function of elevation at Grand Canyon National Park. Inorganic chemical constituents were analyzed also to help place the relative importance of organics in perspective. Fine particle organic aerosols were approximately equal in concentration to sulfate aerosols at both sites. Monthly average mass concentrations for fine aerosol organics ranged from 1.1 μg m(−3) (IG) to 1.3 μg m^(−3) (HP), while the organic aerosol concentration within total suspended particulate matter samples ranged from 1.9 μg m^(−3) (IG) to 2.1 μg m^(−3) (HP). Aerosol organics that could be evaluated by gas chromatography with flame ionization detection (GC-FID) (elutable organics) constituted 27% to 53% of the total organics mass collected as fine or total aerosol. At each site, roughly half of the elutable organics fine aerosol fraction was composed of highly polar organic compounds. Distributions of the elutable organics were compared to Los Angeles fine aerosol samples and to distributions of authentic sources of aerosol organics. It was found that the Grand Canyon organic aerosol during August 1989 did not resemble diluted aged Los Angeles organic aerosol, indicating that most of the organic particulate matter at the Grand Canyon at the time studied originated from other sources
- …
