4,965 research outputs found
Strong Decays of Light Vector Mesons
The vector meson strong decays rho-->pi pi, phi-->KK, and K^star-->pi K are
studied within a covariant approach based on the ladder-rainbow truncation of
the QCD Dyson--Schwinger equation for the quark propagator and the
Bethe--Salpeter equation for the mesons. The model preserves the one-loop
behavior of QCD in the ultraviolet, has two infrared parameters, and implements
quark confinement and dynamical chiral symmetry breaking. The 3-point decay
amplitudes are described in impulse approximation. The Bethe--Salpeter study
motivates a method for estimating the masses for heavier mesons within this
model without continuing the propagators into the complex plane. We test the
accuracy via the rho, phi and K^{star} masses and then produce estimates of the
model results for the a_1 and b_1 masses as well as the mass of the proposed
exotic vector pi_1(1400).Comment: Submitted for publication; 10x2-column pages, REVTEX 4, 3 .eps files
making 3fig
Analytic structure of the Landau gauge gluon propagator
The results of different non-perturbative studies agree on a power law as the
infrared behavior of the Landau gauge gluon propagator. This propagator
violates positivity and thus indicates the absence of the transverse gluons
from the physical spectrum, i.e. gluon confinement. A simple analytic structure
for the gluon propagator is proposed capturing all of its features. We comment
also on related investigations for the Landau gauge quark propagator.Comment: 4 pages, 2 figures, talk given by R.A. at 6th Conference on Quark
Confinement and the Hadron Spectrum, Villasimius, Sardinia, Italy, 21-25 Sep
200
Chirally symmetric quark description of low energy \pi-\pi scattering
Weinberg's theorem for \pi-\pi scattering, including the Adler zero at
threshold in the chiral limit, is analytically proved for microscopic quark
models that preserve chiral symmetry. Implementing Ward-Takahashi identities,
the isospin 0 and 2 scattering lengths are derived in exact agreement with
Weinberg's low energy results. Our proof applies to alternative quark
formulations including the Hamiltonian and Euclidean space Dyson-Schwinger
approaches. Finally, the threshold \pi-\pi scattering amplitudes are calculated
using the Dyson-Schwinger equations in the rainbow-ladder truncation,
confirming the formal derivation.Comment: 10 pages, 7 figures, Revtex
MPD thruster technology
MPD (MagnetoPlasmaDynamic) thrusters demonstrated between 2000 and 7000 seconds specific impulse at efficiencies approaching 40 percent, and were operated continuously at power levels over 500 kW. These demonstrated capabilities, combined with the simplicity and robustness of the thruster, make them attractive candidates for application to both unmanned and manned orbit raising, lunar, and planetary missions. To date, however, only a limited number of thruster configurations, propellants, and operating conditions were studied. The present status of MPD research is reviewed, including developments in the measured performance levels and electrode erosion rates. Theoretical studies of the thruster dynamics are also described. Significant progress was made in establishing empirical scaling laws, performance and lifetime limitations and in the development of numerical codes to simulate the flow field and electrode processes
C properties with evolved chiral three-nucleon interactions
We investigate selected static and transition properties of C using ab
initio No-Core Shell Model (NCSM) methods with chiral two- and three-nucleon
interactions. We adopt the Similarity Renormalization Group (SRG) to assist
convergence including up to three-nucleon (3N) contributions. We examine the
dependences of the C observables on the SRG evolution scale and on the
model-space parameters. We obtain nearly converged low-lying excitation
spectra. We compare results of the full NCSM with the Importance Truncated NCSM
in large model spaces for benchmarking purposes. We highlight the effects of
the chiral 3N interaction on several spectroscopic observables. The agreement
of some observables with experiment is improved significantly by the inclusion
of 3N interactions, e.g., the B(M1) from the first state to
the ground state. However, in some cases the agreement deteriorates, e.g., for
the excitation energy of the first state, leaving room for improved
next-generation chiral Hamiltonians.Comment: 11 pages, 9 figure
State of the art of plastic sorting and recycling : Feedback to vehicle design
Today car manufacturers are beginning to integrate recycling constraints in the first stages of the design of a new car due to their concern regarding the effects of car design on the recovery of material after End-of-Life Vehicle treatment. Improved understanding of the recycling process can help designers to avoid contaminants in the recycled product and improve the efficiency of current and new sorting methods. The main goal of this paper is to describe the state of the art of the technical efficiency of recovery channels for plastics in Europe in order to define requirements for automotive plastic part design. This paper will first present the results of a survey on industrial and innovative recycling technologies mainly originating from the mining sector, and secondly a simplified methodology for car design integrating plastic recycling constraints. This methodology concerns material association and compatibility, the type of assemblies favourable to better recycling, and better reuse of recycled products in cars.Renault Research Direction FR TCR LAB 1 13, Service 641000-Recycling Engineering, 1 avenue du Golf, 78288 Guyancourt Cedex, Franc
condensate for light quarks beyond the chiral limit
We determine the condensate for quark masses from zero up to
that of the strange quark within a phenomenologically successful modelling of
continuum QCD by solving the quark Schwinger-Dyson equation. The existence of
multiple solutions to this equation is the key to an accurate and reliable
extraction of this condensate using the operator product expansion. We explain
why alternative definitions fail to give the physical condensate.Comment: 13 pages, 8 figure
Confinement Phenomenology in the Bethe-Salpeter Equation
We consider the solution of the Bethe-Salpeter equation in Euclidean metric
for a qbar-q vector meson in the circumstance where the dressed quark
propagators have time-like complex conjugate mass poles. This approximates
features encountered in recent QCD modeling via the Dyson-Schwinger equations;
the absence of real mass poles simulates quark confinement. The analytic
continuation in the total momentum necessary to reach the mass shell for a
meson sufficiently heavier than 1 GeV leads to the quark poles being within the
integration domain for two variables in the standard approach. Through Feynman
integral techniques, we show how the analytic continuation can be implemented
in a way suitable for a practical numerical solution. We show that the would-be
qbar-q width to the meson generated from one quark pole is exactly cancelled by
the effect of the conjugate partner pole; the meson mass remains real and there
is no spurious qbar-q production threshold. The ladder kernel we employ is
consistent with one-loop perturbative QCD and has a two-parameter infrared
structure found to be successful in recent studies of the light SU(3) meson
sector.Comment: Submitted for publication; 10.5x2-column pages, REVTEX 4, 3
postscript files making 3 fig
Infrared divergence in QED at finite temperature
We consider various ways of treating the infrared divergence which appears in
the dynamically generated fermion mass, when the transverse part of the photon
propagator in N flavour at finite temperature is included in the
Matsubara formalism. This divergence is likely to be an artefact of taking into
account only the leading order term in the expansion when we
calculate the photon propagator and is handled here phenomenologically by means
of an infrared cutoff. Inserting both the longitudinal and the transverse part
of the photon propagator in the Schwinger-Dyson equation we find the dependence
of the dynamically generated fermion mass on the temperature and the cutoff
parameters. It turns out that consistency with certain statistical physics
arguments imposes conditions on the cutoff parameters. For parameters in the
allowed range of values we find that the ratio is approximately 6, consistently with previous calculations which
neglected the transverse photon contribution.Comment: 37 pages, 12 figures, typos corrected, references added, Introduction
rewritte
- …
