2,938 research outputs found

    Series of experiments for empirical validation of solar gain modelling in building energy simulation codes - experimental setup, test cell characterization, specifications and uncertainty analysis

    Get PDF
    Empirical validation of building energy simulation codes is an important component in understanding the capacity and limitations of the software. Within the framework of Task 34/Annex 43 of the International Energy Agency (IEA), a series of experiments was performed in an outdoor test cell. The objective of these experiments was to provide a high-quality data set for code developers and modelers to validate their solar gain models for windows with and without shading devices. A description of the necessary specifications for modeling these experiments is provided in this paper, which includes information about the test site location, experimental setup, geometrical and thermophysical cell properties including estimated uncertainties. Computed overall thermal cell properties were confirmed by conducting a steady-state experiment without solar gains. A transient experiment, also without solar gains, and corresponding simulations from four different building energy simulation codes showed that the provided specifications result in accurate thermal cell modeling. A good foundation for the following experiments with solar gains was therefore accomplished

    Brauer characters of qâ€Č-degree in p-solvable groups

    Get PDF

    Large-Scale Production of Monitored Drift Tube Chambers for the ATLAS Muon Spectrometer

    Full text link
    Precision drift tube chambers with a sense wire positioning accuracy of better than 20 microns are under construction for the ATLAS muon spectrometer. 70% of the 88 large chambers for the outermost layer of the central part of the spectrometer have been assembled. Measurements during chamber construction of the positions of the sense wires and of the sensors for the optical alignment monitoring system demonstrate that the requirements for the mechanical precision of the chambers are fulfilled

    Performance of the ATLAS Precision Muon Chambers under LHC Operating Conditions

    Full text link
    For the muon spectrometer of the ATLAS detector at the large hadron collider (LHC), large drift chambers consisting of 6 to 8 layers of pressurized drift tubes are used for precision tracking covering an active area of 5000 m2 in the toroidal field of superconducting air core magnets. The chambers have to provide a spatial resolution of 41 microns with Ar:CO2 (93:7) gas mixture at an absolute pressure of 3 bar and gas gain of 2?104. The environment in which the chambers will be operated is characterized by high neutron and background with counting rates of up to 100 per square cm and second. The resolution and efficiency of a chamber from the serial production for ATLAS has been investigated in a 100 GeV muon beam at photon irradiation rates as expected during LHC operation. A silicon strip detector telescope was used as external reference in the beam. The spatial resolution of a chamber is degraded by 4 ?m at the highest background rate. The detection efficiency of the drift tubes is unchanged under irradiation. A tracking efficiency of 98% at the highest rates has been demonstrated

    Resolution and Efficiency of the ATLAS Muon Drift-Tube Chambers at High Background Rates

    Full text link
    The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 Hz/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate

    Two-point density correlations of quasicondensates in free expansion

    Full text link
    We measure the two-point density correlation function of freely expanding quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime. While initially suppressed in the trap, density fluctuations emerge gradually during expansion as a result of initial phase fluctuations present in the trapped quasicondensate. Asymptotically, they are governed by the thermal coherence length of the system. Our measurements take place in an intermediate regime where density correlations are related to near-field diffraction effects and anomalous correlations play an important role. Comparison with a recent theoretical approach described by Imambekov et al. yields good agreement with our experimental results and shows that density correlations can be used for thermometry of quasicondensates.Comment: 4 pages, 4 figures, minor change

    NMR Imaging of the honeybee brain

    Get PDF
    NMR microscopy provides non-invasively distinct soft-tissue contrast in small biological samples. We were able to visualize the three-dimensional structure of the honeybee brain in its natural shape in the intact head capsule. Thus, in addition to acquiring detailed information about the shapes and volumes of the different brain compartments, we were able to show their relative orientations toward each other within the head capsule. Since the brain was lightly fixed but not dehydrated, and stayed attached to the head capsule and its internal structures, the NMR experiments exhibited larger volumes and a more natural stereo geometry of the various brain structures compared to confocal laser microscopy experiments on dissected, dehydrated and cleared brains. Abbreviation: / CLM: confocal laser microscopy NMR: nuclear magnetic resonanc

    Prevalence and severity of dental caries among American Indian and Alaska Native preschool children

    Full text link
    Objectives: To describe the Indian Health Service (IHS) oral health surveillance system and the oral health status of American Indian and Alaska Native (AI/AN) children aged 1‐5 years. Methods: A stratified probability sample of IHS/tribal sites was selected. Children were screened by trained examiners at community‐based locations including medical clinics, Head Start, preschools, kindergarten, and Women, Infants, and Children (WIC). Data collection was limited to the primary dentition and included number of teeth present plus number of teeth with cavitated lesions, restorations, and extracted because of decay. Number of molars with sealants and urgency of need for dental care data were also obtained. Statistical analyses were performed with SAS (SAS Institute Inc., Cary, NC, USA). Sample weights were used to produce population estimates based on selection probabilities. Results: A total of 8,461 AI/AN children 12‐71 months of age were screened at 63 IHS/tribal sites, approximately 7 percent of the estimated IHS user population of the same age. Overall, 54 percent of the children had decay experience, 39 percent had untreated decay, 7 percent had primary molar sealants, 36 percent needed early or urgent dental care, and 6 percent needed urgent dental care. The mean of decayed, missing, or filled teeth was 3.5 (95 percent confidence interval, 3.1‐3.9). The prevalence of decay experience increased with age; 21 percent of 1‐year‐olds and 75 percent of 5‐year‐olds had a history of caries. When stratified by IHS area, there were substantial differences in the oral health of preschool children. Conclusions: The results confirm that in the United States, AI/AN children served by IHS/tribal programs are one of the racial/ethnic groups at highest risk of caries.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/93514/1/j.1752-7325.2012.00331.x.pd

    Construction and Test of MDT Chambers for the ATLAS Muon Spectrometer

    Full text link
    The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the AT- LAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of pressurized drift tubes on either side of a space frame carrying an optical monitoring system to correct for deformations. The full-scale prototype of a large MDT chamber has been constructed with methods suitable for large-scale production. X-ray measurements at CERN showed a positioning accuracy of the sense wires in the chamber of better than the required 20 ?microns (rms). The performance of the chamber was studied in a muon beam at CERN. Chamber production for ATLAS now has started

    Two-point phase correlations of a one-dimensional bosonic Josephson junction

    Full text link
    We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling. The thermal equilibrium state is characterized by probing the full statistical distribution function of the two-point phase correlation. Comparison to a stochastic model allows to measure the coupling strength and temperature and hence a full characterization of the system
    • 

    corecore