2,564 research outputs found

    Conformal cosmology with a positive effective gravitational constant

    Full text link
    The conformal cosmological model presented by Mannheim predicts a negative value for the effective gravitational constant, G. It also involves a scalar field, S, which is treated classically. In this paper we point out that a classical treatment of S is inappropriate, because the Hamiltonian is non-Hermitean, and the theory must be developed in the way pioneered by Bender and others. When this is done, we arrive at a Hamiltonian with an energy spectrum that is bounded below, and also a G that is positive. The resulting theory closely resembles the conventional cosmology based on Einstein relativity

    Implications of Cosmic Repulsion for Gravitational Theory

    Full text link
    In this paper we present a general, model independent analysis of a recently detected apparent cosmic repulsion, and discuss its potential implications for gravitational theory. In particular, we show that a negatively spatially curved universe acts like a diverging refractive medium, to thus naturally cause galaxies to accelerate away from each other. Additionally, we show that it is possible for a cosmic acceleration to only be temporary, with some accelerating universes actually being able to subsequently recontract.Comment: RevTeX, 13 page

    Newtonian Limit of Conformal Gravity

    Get PDF
    We study the weak-field limit of the static spherically symmetric solution of the locally conformally invariant theory advocated in the recent past by Mannheim and Kazanas as an alternative to Einstein's General Relativity. In contrast with the previous works, we consider the physically relevant case where the scalar field that breaks conformal symmetry and generates fermion masses is nonzero. In the physical gauge, in which this scalar field is constant in space-time, the solution reproduces the weak-field limit of the Schwarzschild--(anti)DeSitter solution modified by an additional term that, depending on the sign of the Weyl term in the action, is either oscillatory or exponential as a function of the radial distance. Such behavior reflects the presence of, correspondingly, either a tachion or a massive ghost in the spectrum, which is a serious drawback of the theory under discussion.Comment: 9 pages, comments and references added; the version to be published in Phys. Rev.

    Local and global gravity

    Full text link
    Our long experience with Newtonian potentials has inured us to the view that gravity only produces local effects. In this paper we challenge this quite deeply ingrained notion and explicitly identify some intrinsically global gravitational effects. In particular we show that the global cosmological Hubble flow can actually modify the motions of stars and gas within individual galaxies, and even do so in a way which can apparently eliminate the need for galactic dark matter. Also we show that a classical light wave acquires an observable, global, path dependent phase in traversing a gravitational field. Both of these effects serve to underscore the intrinsic difference between non-relativistic and relativistic gravity.Comment: LaTeX, 20 pages plus three figures in two postscript files. To appear in a special issue of Foundations of Physics honoring Professor Lawrence Horwitz on the occasion of his 65th birthday; A. van der Merwe and S. Raby, Editors, Plenum Publishing Company, N.Y., 199

    Open Questions in Classical Gravity

    Full text link
    We discuss some outstanding open questions regarding the validity and uniqueness of the standard second order Newton-Einstein classical gravitational theory. On the observational side we discuss the degree to which the realm of validity of Newton's Law of Gravity can actually be extended to distances much larger than the solar system distance scales on which the law was originally established. On the theoretical side we identify some commonly accepted but actually still open to question assumptions which go into the formulating of the standard second order Einstein theory in the first place. In particular, we show that while the familiar second order Poisson gravitational equation (and accordingly its second order covariant Einstein generalization) may be sufficient to yield Newton's Law of Gravity they are not in fact necessary. The standard theory thus still awaits the identification of some principle which would then make it necessary too. We show that current observational information does not exclusively mandate the standard theory, and that the conformal invariant fourth order theory of gravity considered recently by Mannheim and Kazanas is also able to meet the constraints of data, and in fact to do so without the need for any so far unobserved non-luminous or dark matter.Comment: UCONN-93-1, plain TeX format, 22 pages (plus 7 figures - send requests to [email protected]). To appear in a special issue of Foundations of Physics honoring Professor Fritz Rohrlich on the occasion of his retirement, L. P. Horwitz and A. van der Merwe Editors, Plenum Publishing Company, N.Y., Fall 199

    On photohadronic processes in astrophysical environments

    Full text link
    We discuss the first applications of our newly developed Monte Carlo event generator SOPHIA to multiparticle photoproduction of relativistic protons with thermal and power law radiation fields. The measured total cross section is reproduced in terms of excitation and decay of baryon resonances, direct pion production, diffractive scattering, and non-diffractive multiparticle production. Non--diffractive multiparticle production is described using a string fragmentation model. We demonstrate that the widely used `Δ\Delta--approximation' for the photoproduction cross section is reasonable only for a restricted set of astrophysical applications. The relevance of this result for cosmic ray propagation through the microwave background and hadronic models of active galactic nuclei and gamma-ray bursts is briefly discussed.Comment: 9 pages including 4 embedded figures, submitted to PAS

    Conversion of relativistic pair energy into radiation in the jets of active galactic nuclei

    Get PDF
    It is generally accepted that relativistic jet outflows power the nonthermal emission from active galactic nuclei (AGN). The composition of these jets -- leptonic versus hadronic -- is still under debate. We investigate the microphysical details of the conversion process of the kinetic energy in collimated relativistic pair outflows into radiation through interactions with the ambient interstellar medium. Viewed from the coordinate system comoving with the pair outflow, the interstellar protons and electrons represent a proton-electron beam propagating with relativistic speed in the pair plasma. We demonstrate that the beam excites both electrostatic and low-frequency magnetohydrodynamic Alfven-type waves via a two-stream instability in the pair background plasma, and we calculate the time evolution of the distribution functions of the beam particles and the generated plasma wave turbulence power spectra. For standard AGN jet outflow and environment parameters we show that the initial beam distributions of interstellar protons and electrons quickly relax to plateau-distributions in parallel momentum, transferring thereby one-half of the initial energy density of the beam particles to electric field fluctuations of the generated electrostatic turbulence. On considerably longer time scales, the plateaued interstellar electrons and protons will isotropise by their self-generated transverse turbulence and thus be picked-up in the outflow pair plasma. These longer time scales are also characteristic for the development of transverse hydromagnetic turbulence from the plateaued electrons and protons. This hydromagnetic turbulence upstream and downstream is crucial for diffusive shock acceleration to operate at external or internal shocks associated with pair outflows.Comment: A&A in pres

    Broadband study of blazar 1ES 1959+650 during flaring state in 2016

    Full text link
    Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare during MJD 57530 - 57589 using simultaneous multiwaveband data to understand the possible broadband emission scenario during the flare. Methods : The UV/optical and X-ray data from UVOT and XRT respectively on board Swift and high energy γ\gamma-ray data from Fermi-LAT are used to generate multiwaveband lightcurves as well as to obtain high flux states and quiescent state SEDs. The correlation and lag between different energy bands is quantified using discrete correlation function. The synchrotron self Compton (SSC) model was used to reproduce the observed SEDs during flaring and quiescent states of the source. Results : A decent correlation is seen between X-ray and high energy γ\gamma-ray fluxes. The spectral hardening with increase in the flux is seen in X-ray band. The powerlaw index vs flux plot in γ\gamma-ray band indicates the different emission regions for 0.1 - 3 GeV and 3-300 GeV energy photons. Two zone SSC model satisfactorily fits the observed broadband SEDs. The inner zone is mainly responsible for producing synchrotron peak and high energy γ\gamma-ray part of the SED in all states. The second zone is mainly required to produce less variable optical/UV and low energy γ\gamma-ray emission. Conclusions : Conventional single zone SSC model does not satisfactorily explain broadband emission during observation period considered. There is an indication of two emission zones in the jet which are responsible for producing broadband emission from optical to high energy γ\gamma-rays.Comment: 11 pages, 12 figures, Accepted in A&
    corecore