69 research outputs found

    New cellular automaton designed to simulate epitaxial films growth

    Get PDF
    In this paper a simple (2+1) solid-on-solid model of the epitaxial films growth based on random deposition followed by breaking particle-particle lateral bonds and particles surface diffusion is introduced. The influence of the critical number of the particle-particle lateral bonds zz and the deposition rate on the surface roughness dynamics and possible surface morphology anisotropy is presented. The roughness exponent α\alpha and the growth exponent β\beta are (0.863,0.357)(0.863,0.357), (0.215,0.123)(0.215,0.123), (0.101,0.0405)(0.101,0.0405) and (0.0718,0.0228)(0.0718,0.0228) for z=1z=1, 2, 3 and 4, respectively. Snapshots from simulations of the growth process are included.Comment: 10 pages, elsart, 5 figures in 20 file

    Truth seekers in opinion dynamics models

    Full text link
    We modify the model of Deffuant et al. to distinguish true opinion among others in the fashion of Hegselmann and Krause . The basic features of both models modified to account for truth seekers are qualitatively the same.Comment: RevTeX4, 2 pages, 1 figure in 6 eps file

    Majority-vote model on (3,4,6,4) and (3^4,6) Archimedean lattices

    Full text link
    On Archimedean lattices, the Ising model exhibits spontaneous ordering. Two examples of these lattices of the majority-vote model with noise are considered and studied through extensive Monte Carlo simulations. The order/disorder phase transition is observed in this system. The calculated values of the critical noise parameter are q_c=0.091(2) and q_c=0.134(3) for (3,4,6,4) and (3^4,6) Archimedean lattices, respectively. The critical exponents beta/nu, gamma/nu and 1/nu for this model are 0.103(6), 1.596(54), 0.872(85) for (3,4,6,4) and 0.114(3), 1.632(35), 0.978(104) for (3^4,6) Archimedean lattices. These results differs from the usual Ising model results and the majority-vote model on so-far studied regular lattices or complex networks. The effective dimensionality of the system [D_{eff}(3,4,6,4)=1.802(55) and D_{eff}(3^4,6)=1.860(34)] for these networks are reasonably close to the embedding dimension two.Comment: 6 pages, 7 figures in 12 eps files, RevTex

    Square lattice site percolation at increasing ranges of neighbor interactions

    Full text link
    We report site percolation thresholds for square lattice with neighbor interactions at various increasing ranges. Using Monte Carlo techniques we found that nearest neighbors (N2^2), next nearest neighbors (N3^3), next next nearest neighbors (N4^4) and fifth nearest neighbors (N6^6) yield the same pc=0.592...p_c=0.592.... At odds, fourth nearest neighbors (N5^5) give pc=0.298...p_c=0.298.... These results are given an explanation in terms of symmetry arguments. We then consider combinations of various ranges of interactions with (N2^2+N3^3), (N2^2+N4^4), (N2^2+N3^3+N4^4) and (N2^2+N5^5). The calculated associated thresholds are respectively pc=0.407...,0.337...,0.288...,0.234...p_c=0.407..., 0.337..., 0.288..., 0.234.... The existing Galam--Mauger universal formula for percolation thresholds does not reproduce the data showing dimension and coordination number are not sufficient to build a universal law which extends to complex lattices.Comment: 4 pages, revtex

    How pairs of partners emerge in an initially fully connected society

    Full text link
    A social group is represented by a graph, where each pair of nodes is connected by two oppositely directed links. At the beginning, a given amount p(i)p(i) of resources is assigned randomly to each node ii. Also, each link r(i,j)r(i,j) is initially represented by a random positive value, which means the percentage of resources of node ii which is offered to node jj. Initially then, the graph is fully connected, i.e. all non-diagonal matrix elements r(i,j)r(i,j) are different from zero. During the simulation, the amounts of resources p(i)p(i) change according to the balance equation. Also, nodes reorganise their activity with time, going to give more resources to those which give them more. This is the rule of varying the coefficients r(i,j)r(i,j). The result is that after some transient time, only some pairs (m,n)(m,n) of nodes survive with non-zero p(m)p(m) and p(n)p(n), each pair with symmetric and positive r(m,n)=r(n,m)r(m,n)=r(n,m). Other coefficients r(m,in)r(m,i\ne n) vanish. Unpaired nodes remain with no resources, i.e. their p(i)=0p(i)=0, and they cease to be active, as they have nothing to offer. The percentage of survivors (i.e. those with with p(i)p(i) positive) increases with the velocity of varying the numbers r(i,j)r(i,j), and it slightly decreases with the size of the group. The picture and the results can be interpreted as a description of a social algorithm leading to marriages.Comment: 7 pages, 3 figure

    Average distance in growing trees

    Full text link
    Two kinds of evolving trees are considered here: the exponential trees, where subsequent nodes are linked to old nodes without any preference, and the Barab\'asi--Albert scale-free networks, where the probability of linking to a node is proportional to the number of its pre-existing links. In both cases, new nodes are linked to m=1m=1 nodes. Average node-node distance dd is calculated numerically in evolving trees as dependent on the number of nodes NN. The results for NN not less than a thousand are averaged over a thousand of growing trees. The results on the mean node-node distance dd for large NN can be approximated by d=2ln(N)+c1d=2\ln(N)+c_1 for the exponential trees, and d=ln(N)+c2d=\ln(N)+c_2 for the scale-free trees, where the cic_i are constant. We derive also iterative equations for dd and its dispersion for the exponential trees. The simulation and the analytical approach give the same results.Comment: 6 pages, 3 figures, Int. J. Mod. Phys. C14 (2003) - in prin

    Restoring site percolation on a damaged square lattice

    Full text link
    We study how to restore site percolation on a damaged square lattice with nearest neighbor (N2^2) interactions. Two strategies are suggested for a density xx of destroyed sites by a random attack at pcp_c. In the first one, a density yy of new sites are created with longer range interactions, either next nearest neighbor (N3^3) or next next nearest neighbor (N4^4). In the second one, new longer range interactions N3^3 or N4^4 are created for a fraction vv of the remaining (pcx)(p_c-x) sites in addition to their N2^2 interactions. In both cases, the values of yy and vv are tuned in order to restore site percolation which then occurs at new percolation thresholds, respectively π3\pi_3, π4\pi_4, π23\pi_{23} and π24\pi_{24}. Using Monte Carlo simulations the values of the pairs {y,π3}\{y, \pi_3 \}, {y,π4}\{y, \pi_4\} and {v,π23}\{v, \pi_{23}\}, {v,π24}\{v, \pi_{24}\} are calculated for the whole range 0xpc(N2)0\leq x \leq p_c(\text{N}^2). Our schemes are applicable to all regular lattices.Comment: 5 pages, revtex

    Spreading gossip in social networks

    Get PDF
    We study a simple model of information propagation in social networks, where two quantities are introduced: the spread factor, which measures the average maximal fraction of neighbors of a given node that interchange information among each other, and the spreading time needed for the information to reach such fraction of nodes. When the information refers to a particular node at which both quantities are measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real empirical networks of social acquaintances and compare the underlying spreading dynamics with different types of scale-free and small-world networks. We find that the number of friendship connections strongly influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to other situations.Comment: 10 pages, 16 figures, Revtex; Virt.J. of Biol. Phys., Oct.1 200

    Exact Curie temperature for the Ising model on Archimedean and Laves lattices

    Full text link
    Using the Feynman-Vdovichenko combinatorial approach to the two dimensional Ising model, we determine the exact Curie temperature for all two dimensional Archimedean lattices. By means of duality, we extend our results to cover all two dimensional Laves lattices. For those lattices where the exact critical temperatures are not exactly known yet, we compare them with Monte Carlo simulations.Comment: 10 pages, 1 figures, 3 table

    Clusterization, frustration and collectivity in random networks

    Full text link
    We consider the random Erd{\H o}s--R\'enyi network with enhanced clusterization and Ising spins s=±1s=\pm 1 at the network nodes. Mutually linked spins interact with energy JJ. Magnetic properties of the system as dependent on the clustering coefficient CC are investigated with the Monte Carlo heat bath algorithm. For J>0J>0 the Curie temperature TcT_c increases from 3.9 to 5.5 when CC increases from almost zero to 0.18. These results deviate only slightly from the mean field theory. For J<0J<0 the spin-glass phase appears below TSGT_{SG}; this temperature decreases with CC, on the contrary to the mean field calculations. The results are interpreted in terms of social systems.Comment: 10 pages, 6 figures; serious change of result
    corecore