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Abstract

In this paper a simple (2+1) solid-on-solid model of the epitaxial films growth
based on random deposition followed by breaking particle-particle lateral bonds
and particles surface diffusion is introduced. The influence of the critical num-
ber of the particle-particle lateral bonds z and the deposition rate on the surface
roughness dynamics and possible surface morphology anisotropy is presented. The
roughness exponent α and the growth exponent β are (0.863, 0.357), (0.215, 0.123),
(0.101, 0.0405) and (0.0718, 0.0228) for z = 1, 2, 3 and 4, respectively.

Snapshots from simulations of the growth process are included.

Key words: anisotropy, computer simulations, molecular beam epitaxy, Monte
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1 Introduction

Theoretical modelling of films epitaxial growth — which is growth of an ori-
ented single-crystal film of one material upon a single-crystal substrate of
another [1] and when the main microscopic process is particles deposition fol-
lowed by their diffusion on the surface — may be grouped to continuum and
discrete approaches [2].
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The continuum ones are based on the stochastic differential Langevin equa-
tions [3,4,5,6] which group models to the various classes of universality asso-
ciated with the some set of critical exponents. In discrete approach computa-
tional methods may be applied, with cellular automata technique (CA) [9,10]
among others. The latter bases usually on the Arrhenius-like kinetics [11,12]
and requires knowing many parameters, for instance:

• material and neighbourhood-dependent activation energies for different el-
ementary processes,

• adatom/adatom, substrate-atom/substrate-atom and substrate-atom/adatom
bonds strengths,

• vibration factors,
• substrate temperature,
• incoming particles flux, etc.

Usually, the values of these parameters are fitted to reproduce some experi-
mentally measured particles and/or surface characteristics.

The title of Ref. [10] characterise the CA technique very well, as for CA, both,
discrete time and space are necessary. The model must include also the rule
which tells how the states of lattice cells are subsequently updated. Usually,
CA models for epitaxial growth simulations [13] base on simple or even toy,
mechanical rules, e.g. random deposition followed by particles relaxation (see
Ref. [2] for review). In the relaxation process particles often virtually move to
the nearest-neighbourhoods (NN) sites to check offered there accommodation
conditions and then chose the best one. Quite often, the subsequent particle
arrives to the place of its first contact with surface only when previously
deposited particle migration process has been completed. Such a situation
corresponds to very low flux of incoming particles and does not meet real
condition during molecular beam epitaxy experiments.

Here we would like to present simple CA which looses both: disadvantages of
non-physical particles virtual movement to the NN sites and low particles flux
but still does not need material dependent constants.

2 Model

Presented here model, as usually, is extension to random deposition model
(RDM) with additional particles relaxation. The solid-on-solid approximation
is applied, so the film may be fully characterised by single-valued function
h(x, y, t) of the film height in planar coordinates (1 ≤ x ≤ L, 1 ≤ y ≤ L) in
time t.
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We start our simulation with perfectly flat substrate. Every τL2 time steps
new jet of θdepL

2 particles arrives. Each time step — between subsequent acts
of the depositions — particles ‘sitting’ on the column top may diffuse on the
surface. The only mobile particles are those which currently have less than zx
and zy created particle-particle lateral bonds (PPLB) in x- and y-direction,
respectively. For isotropic case only one number z guards the particles mobility.
Active particles and their movement directions are picked up randomly. The
particles are not allowed to climb on higher levels, but they are able to jump
down at the terrace edge. The simulation is carried out until a desired film
thickness θmax has been deposited.

3 Results

We characterise surface morphology with some statistical parameters such as
film thickness θ and surface width w. The film roughness w is defined as the
film height h standard deviation

w2(t) =
∑

x,y

[h(x, y, t) − θ(t)]2/L2

from the average film thickness

θ(t) =
∑

x,y

h(x, y, t)/L2.

For anisotropic case (zx 6= zy and zxzy 6= 0) few measures ε describing quan-
titatively surface morphology anisotropy were proposed and investigated.

For zzxzy = 0 and/or τ = 0 the RDM results are well reproduced with Poisson

distribution of film heights and w(t) =
√

θ(t). The film sample for RDM is

presented in Fig. 1(a).

3.1 Isotropic case

For wide variety of discrete models of surface growth the surface width w is
expected to follow the dynamical Family–Vicsek [17] scaling law:

w(t, L) ∝ Lα · f(t/Lζ), (1a)

with scaling function

f(x) =







xβ and β = α/ζ for x ≪ 1,

1 for x ≫ 1,
(1b)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Samples of film for (a) RDM (zzxzy = 0 and/or τ = 0), isotropic case with
(b) z = 1 (c) z = 2 (d) z = 4, and anisotropic cases (e) zx = 1, zy = 2 (f) zx = 2,
zy = 1 (g) zx = 1, zy = 3 (h) zx = 2, zy = 3. Average film height θmax = 2.5 [ML]
for RDM and isotropic cases and θmax = 0.2 [ML] for anisotropic ones. For all cases
the deposition rate was given by θdep = 0.01 [ML] and τ = 10. 30 × 30-large parts
of lattices are presented.

where α, β and ζ are roughness, growth and dynamic exponent, respectively.
From Eq. (1) one may read surface roughness dynamics: before reaching the
characteristic film thickness θsat the surface roughness grows like w(t) ∝ tβ

(see Fig. 3(a) and Tab. 1). Then, the roughness saturates on the level wsat

depending on the substrate linear size L: wsat ∝ Lα (see Fig. 3(b) and Tab.
1). These exponent predict also classes of universality [6,7]. However, deter-
mination of the exponents α, β and ζ solely on the calculation of w(L, t) has
to be treated with caution [8].

For large enough number of relaxations, e.g. τ ≥ 5, the characteristic layer-
by-layer oscillations of roughness w(t) occur and Frank–van de Merwe growth
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Table 1
Roughness α and growth exponents β dependence on the critical PPLB number
z for θdep = 0.1 [ML] and τ = 1. The results are average over Nrun independent
simulations (from several thousand for L = 5 to a few for L = 100).

z 1 2 3 4

α 0.863 0.215 0.1005 0.0718

β 0.357 0.123 0.0405 0.0228
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Fig. 2. Time evolution of the surface roughness w(t) for different number of the
particle relaxations τ and different critical values of PPLB (a) z = 1, (b) z = 2, (c)
z = 3 and (d) z = 4 (L = 103, θdep = 0.1 [ML]).

mode is observed (see Figs. 2 and 4). The influence of the critical number of
PPLB z on the roughness and growth exponents for given θdep = 0.1 [ML] and
τ = 1 are collected in Tab. 1.

Surface roughness decreases with τ (see Fig. 2) but increases with θdep (see
Fig. 5), as expected.

The film samples for z = 1, 2, 4 are presented in Figs. 1(b-d).
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Fig. 3. Dependence of the roughness dynamics w(t) for (a) z = 1, (b) z = 2, (c)
z = 3, (d) z = 4 and (e) the saturation level wsat on linear lattice size L for θdep = 0.1
[ML] and τ = 1.
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Fig. 4. Time evolution of the surface roughness w(t) for L = 100, z = 4, θdep = 0.1
[ML] and different values of τ .
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Fig. 5. Dependence of the roughness dynamics w(t) on θdep for L = 1000, τ = 1
and (a) z = 1 (b) z = 4. θdep = 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 from bottom
to top.

Table 2
Different measures of the surface morphology anisotropy ε for L = 1000, θdep = 0.01
[ML], θmax = 0.2 [ML] and τ = 10.

zx 1 2 1 3 2 3

zy 2 1 3 1 3 2

ε1 0.424 −0.424 0.457 −0.457 0.013 −0.013

ε2 3.05 0.443 3.32 0.408 1.11 1.04

ε3 2.61 2.61 2.61 2.61 3.56 3.56

3.2 Anisotropic case

For submonolayer substrate coverage (e.g. θmax = 0.2 [ML]), and when zx 6=
zy and zxzy 6= 0 (see snapshots from simulations presented in Figs. 1(e-h))
we search for quantitative measure of surface morphology anisotropy. One of
such characteristic — based on the height-height correlation function — was
proposed in Ref. [14] and employed for investigation of the surface morphology
thermal evolution in Ref. [15].

Here, for quantitative characterisation of the surface morphology anisotropy
we propose set of ε parameters: ε1 = (φx − φy)/(φx + φy), ε2 = φx/φy, and
ε3 = ℓ/A, where φx and φy are x- and y-side of the minimal rectangle which
totally covers whole cluster, ℓ is the cluster perimeter and A is the the cluster
area. The periodic boundary condition modification of the Hoshen–Kopelman
algorithm [16] for cluster labelling were used. The results are averaged over
all existing clusters. Note, that for isotropic case φx = φy yields ε1 = 0 and
ε2 = 1. The values of ε3 depend on particular clusters shape and their size,
i.e. ε3 = 4/a for square of side a, ε3 = 2/r for circle with radius r and
ε3 = 4

√
3/a for equilateral triangle of side a. It seems that ε1, for which

ε1(zx, zy) = −ε1(zy, zx), is much more suitable for quantitative morphology

7



characterisation than ε2 and/or ε3.

4 Summary

For all values of the critical PPLB z we observe scaling of the surface roughness
w(L, t) according to Family–Vicsek law (1) with characteristic exponents given
in Tab. 1.

For fixed set of model control parameters the roughness w decreases both with
parameter τ and z. The latter one may be also seen in a very naive way as
an equivalent of the absolute substrate temperature, as with increase of z the
particles become more and more mobile (they stick at the place of deposition
for z = 0, while for z = 4 their moves become completely forbidden only when
they have four NN).

The increase of the parameter τ corresponds to effective decrease of the incom-
ing particles flux per unit substrate area and the time step. For lower particles
flux we observe smoother surfaces, as in between subsequent acts of deposition
particles may make more moves. The similar effect may be reproduced with
direct decreasing of the deposition rate θdep, and thus surface roughness w
increases with θdep.

For anisotropic case the dependence of ε1 parameter may be qualitatively
compared with results of Monte Carlo simulations from Ref. [12], CA approach
presented in Refs. [14,15] and — at last but not least — with experimental data
[12]. So, when one identify z with the substrate temperature one may observe
initial increase of ε1 followed by its decrease — i.e. ε1(z̄ = 1.5) < ε1(z̄ =
2) > ε1(z̄ = 2.5), where z̄ = (zx + zy)/2. We conclude, that ε1 has similar
properties as ε defined via height-height correlation function in Ref. [15], and
additionally is antisymmetric (i.e. ε1(zx, zy) = −ε1(zy, zx)) and vanishes for
isotropic case (zx = zy and/or zxzy = 0).

Presented here asynchronous and probabilistic CA

• does not need virtual movements of the particles to the NN sites to check if
they offer better accommodation condition (i.e. higher coordination number
or lower column height),

• and do not have many activation energies (for different elementary processes
like surface diffusion or breaking bonds) and lattice vibration factor, etc.

The latter may be seen as the model disadvantage, however, one can easily
imagine how to introduce material constants into growth rules to obtain the
model which lays somewhere in between CA with simple, mechanical rules
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of surface relaxation and full reversible Arrhenius based kinetic Monte Carlo
model.

The program for growth process microscopy is available from our web-page
[18].
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