351 research outputs found

    Impact of first UK COVID-19 lockdown on hospital admissions : interrupted time series study of 32 million people

    Get PDF
    This work was funded by the Medical Research Council as part of the Lifelong Health and Wellbeing study as part of National Core Studies (MC_PC_20030). SVK acknowledges funding from the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). EAVE II is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE – The Health Data Research Hub for Respiratory Health (MC_PC_19004), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. BG has received research funding from the NHS National Institute for Health Research (NIHR), the Wellcome Trust, Health Data Research UK, Asthma UK, the British Lung Foundation, and the Longitudinal Health and Wellbeing strand of the National Core Studies programme.Background Uncontrolled infection and lockdown measures introduced in response have resulted in an unprecedented challenge for health systems internationally. Whether such unprecedented impact was due to lockdown itself and recedes when such measures are lifted is unclear. We assessed the short- and medium-term impacts of the first lockdown measures on hospital care for tracer non-COVID-19 conditions in England, Scotland and Wales across diseases, sexes, and socioeconomic and ethnic groups. Methods We used OpenSAFELY (for England), EAVEII (Scotland), and SAIL Databank (Wales) to extract weekly hospital admission rates for cancer, cardiovascular and respiratory conditions (excluding COVID-19) from the pre-pandemic period until 25/10/2020 and conducted a controlled interrupted time series analysis. We undertook stratified analyses and assessed admission rates over seven months during which lockdown restrictions were gradually lifted. Findings Our combined dataset included 32 million people who contributed over 74 million person-years. Admission rates for all three conditions fell by 34.2% (Confidence Interval (CI): -43.0, -25.3) in England, 20.9% (CI: -27.8, -14.1) in Scotland, and 24.7% (CI: -36.7, -12.7) in Wales, with falls across every stratum considered. In all three nations, cancer-related admissions fell the most while respiratory-related admissions fell the least (e.g., rates fell by 40.5% (CI: -47.4, -33.6), 21.9% (CI: -35.4, -8.4), and 19.0% (CI: -30.6, -7.4) in England for cancer, cardiovascular-related, and respiratory-related admissions respectively). Unscheduled admissions rates fell more in the most than the least deprived quintile across all three nations. Some ethnic minority groups experienced greater falls in admissions (e.g., in England, unscheduled admissions fell by 9.5% (CI: -20.2, 1.2) for Whites, but 44.3% (CI: -71.0, -17.6), 34.6% (CI: -63.8, -5.3), and 25.6% (CI: -45.0, -6.3) for Mixed, Other and Black ethnic groups respectively). Despite easing of restrictions, the overall admission rates remained lower in England, Scotland, and Wales by 20.8%, 21.6%, and 22.0%, respectively when compared to the same period (August-September) during the pre-pandemic years. This corresponds to a reduction of 26.2, 23.8 and 30.2 admissions per 100,000 people in England, Scotland, and Wales respectively. Interpretation Hospital care for non-COVID diseases fell substantially across England, Scotland, and Wales during the first lockdown, with reductions persisting for at least six months. The most deprived and minority ethnic groups were impacted more severely. Funding This work was funded by the Medical Research Council as part of the Lifelong Health and Wellbeing study as part of National Core Studies (MC_PC_20030). SVK acknowledges funding from the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). EAVE II is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE – The Health Data Research Hub for Respiratory Health (MC_PC_19004), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. BG has received research funding from the NHS National Institute for Health Research (NIHR), the Wellcome Trust, Health Data Research UK, Asthma UK, the British Lung Foundation, and the Longitudinal Health and Wellbeing strand of the National Core Studies programme.Publisher PDFPeer reviewe

    Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: an observational cohort study using the OpenSAFELY platform

    Get PDF
    BACKGROUND: Early descriptions of patients admitted to hospital during the COVID-19 pandemic showed a lower prevalence of asthma and chronic obstructive pulmonary disease (COPD) than would be expected for an acute respiratory disease like COVID-19, leading to speculation that inhaled corticosteroids (ICSs) might protect against infection with severe acute respiratory syndrome coronavirus 2 or the development of serious sequelae. We assessed the association between ICS and COVID-19-related death among people with COPD or asthma using linked electronic health records (EHRs) in England, UK. METHODS: In this observational study, we analysed patient-level data for people with COPD or asthma from primary care EHRs linked with death data from the Office of National Statistics using the OpenSAFELY platform. The index date (start of follow-up) for both cohorts was March 1, 2020; follow-up lasted until May 6, 2020. For the COPD cohort, individuals were eligible if they were aged 35 years or older, had COPD, were a current or former smoker, and were prescribed an ICS or long-acting β agonist plus long-acting muscarinic antagonist (LABA-LAMA) as combination therapy within the 4 months before the index date. For the asthma cohort, individuals were eligible if they were aged 18 years or older, had been diagnosed with asthma within 3 years of the index date, and were prescribed an ICS or short-acting β agonist (SABA) only within the 4 months before the index date. We compared the outcome of COVID-19-related death between people prescribed an ICS and those prescribed alternative respiratory medications: ICSs versus LABA-LAMA for the COPD cohort, and low-dose or medium-dose and high-dose ICSs versus SABAs only in the asthma cohort. We used Cox regression models to estimate hazard ratios (HRs) and 95% CIs for the association between exposure categories and the outcome in each population, adjusted for age, sex, and all other prespecified covariates. We calculated e-values to quantify the effect of unmeasured confounding on our results. FINDINGS: We identified 148 557 people with COPD and 818 490 people with asthma who were given relevant respiratory medications in the 4 months before the index date. People with COPD who were prescribed ICSs were at increased risk of COVID-19-related death compared with those prescribed LABA-LAMA combinations (adjusted HR 1·39 [95% CI 1·10-1·76]). Compared with those prescribed SABAs only, people with asthma who were prescribed high-dose ICS were at an increased risk of death (1·55 [1·10-2·18]), whereas those given a low or medium dose were not (1·14 [0·85-1·54]). Sensitivity analyses showed that the apparent harmful association we observed could be explained by relatively small health differences between people prescribed ICS and those not prescribed ICS that were not recorded in the database (e value lower 95% CI 1·43). INTERPRETATION: Our results do not support a major role for regular ICS use in protecting against COVID-19-related death among people with asthma or COPD. Observed increased risks of COVID-19-related death can be plausibly explained by unmeasured confounding due to disease severity. FUNDING: UK Medical Research Council

    Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter

    Get PDF
    Objective: To date, many brain-machine interface (BMI) studies have developed decoding algorithms for neuroprostheses that provide users with precise control of upper arm reaches with some limited grasping capabilities. However, comparatively few have focused on quantifying the performance of precise finger control. Here we expand upon this work by investigating online control of individual finger groups.Approach: We have developed a novel training manipulandum for non-human primate (NHP) studies to isolate the movements of two specific finger groups: index and middle-ring-pinkie (MRP) fingers. We use this device in combination with the ReFIT (Recalibrated Feedback Intention-Trained) Kalman filter to decode the position of each finger group during a single degree of freedom task in two rhesus macaques with Utah arrays in motor cortex. The ReFIT Kalman filter uses a two-stage training approach that improves online control of upper arm tasks with substantial reductions in orbiting time, thus making it a logical first choice for precise finger control.Results: Both animals were able to reliably acquire fingertip targets with both index and MRP fingers, which they did in blocks of finger group specific trials. Decoding from motor signals online, the ReFIT Kalman filter reliably outperformed the standard Kalman filter, measured by bit rate, across all tested finger groups and movements by 31.0 and 35.2%. These decoders were robust when the manipulandum was removed during online control. While index finger movements and middle-ring-pinkie finger movements could be differentiated from each other with 81.7% accuracy across both subjects, the linear Kalman filter was not sufficient for decoding both finger groups together due to significant unwanted movement in the stationary finger, potentially due to co-contraction.Significance: To our knowledge, this is the first systematic and biomimetic separation of digits for continuous online decoding in a NHP as well as the first demonstration of the ReFIT Kalman filter improving the performance of precise finger decoding. These results suggest that novel nonlinear approaches, apparently not necessary for center out reaches or gross hand motions, may be necessary to achieve independent and precise control of individual fingers

    Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: an observational cohort study using the OpenSAFELY platform.

    Get PDF
    BACKGROUND: COVID-19 has disproportionately affected minority ethnic populations in the UK. Our aim was to quantify ethnic differences in SARS-CoV-2 infection and COVID-19 outcomes during the first and second waves of the COVID-19 pandemic in England. METHODS: We conducted an observational cohort study of adults (aged ≥18 years) registered with primary care practices in England for whom electronic health records were available through the OpenSAFELY platform, and who had at least 1 year of continuous registration at the start of each study period (Feb 1 to Aug 3, 2020 [wave 1], and Sept 1 to Dec 31, 2020 [wave 2]). Individual-level primary care data were linked to data from other sources on the outcomes of interest: SARS-CoV-2 testing and positive test results and COVID-19-related hospital admissions, intensive care unit (ICU) admissions, and death. The exposure was self-reported ethnicity as captured on the primary care record, grouped into five high-level census categories (White, South Asian, Black, other, and mixed) and 16 subcategories across these five categories, as well as an unknown ethnicity category. We used multivariable Cox regression to examine ethnic differences in the outcomes of interest. Models were adjusted for age, sex, deprivation, clinical factors and comorbidities, and household size, with stratification by geographical region. FINDINGS: Of 17 288 532 adults included in the study (excluding care home residents), 10 877 978 (62·9%) were White, 1 025 319 (5·9%) were South Asian, 340 912 (2·0%) were Black, 170 484 (1·0%) were of mixed ethnicity, 320 788 (1·9%) were of other ethnicity, and 4 553 051 (26·3%) were of unknown ethnicity. In wave 1, the likelihood of being tested for SARS-CoV-2 infection was slightly higher in the South Asian group (adjusted hazard ratio 1·08 [95% CI 1·07-1·09]), Black group (1·08 [1·06-1·09]), and mixed ethnicity group (1·04 [1·02-1·05]) and was decreased in the other ethnicity group (0·77 [0·76-0·78]) relative to the White group. The risk of testing positive for SARS-CoV-2 infection was higher in the South Asian group (1·99 [1·94-2·04]), Black group (1·69 [1·62-1·77]), mixed ethnicity group (1·49 [1·39-1·59]), and other ethnicity group (1·20 [1·14-1·28]). Compared with the White group, the four remaining high-level ethnic groups had an increased risk of COVID-19-related hospitalisation (South Asian group 1·48 [1·41-1·55], Black group 1·78 [1·67-1·90], mixed ethnicity group 1·63 [1·45-1·83], other ethnicity group 1·54 [1·41-1·69]), COVID-19-related ICU admission (2·18 [1·92-2·48], 3·12 [2·65-3·67], 2·96 [2·26-3·87], 3·18 [2·58-3·93]), and death (1·26 [1·15-1·37], 1·51 [1·31-1·71], 1·41 [1·11-1·81], 1·22 [1·00-1·48]). In wave 2, the risks of hospitalisation, ICU admission, and death relative to the White group were increased in the South Asian group but attenuated for the Black group compared with these risks in wave 1. Disaggregation into 16 ethnicity groups showed important heterogeneity within the five broader categories. INTERPRETATION: Some minority ethnic populations in England have excess risks of testing positive for SARS-CoV-2 and of adverse COVID-19 outcomes compared with the White population, even after accounting for differences in sociodemographic, clinical, and household characteristics. Causes are likely to be multifactorial, and delineating the exact mechanisms is crucial. Tackling ethnic inequalities will require action across many fronts, including reducing structural inequalities, addressing barriers to equitable care, and improving uptake of testing and vaccination. FUNDING: Medical Research Council

    Stretch-Induced Stress Fiber Remodeling and the Activations of JNK and ERK Depend on Mechanical Strain Rate, but Not FAK

    Get PDF
    BACKGROUND: Cells within tissues are subjected to mechanical forces caused by extracellular matrix deformation. Cells sense and dynamically respond to stretching of the matrix by reorienting their actin stress fibers and by activating intracellular signaling proteins, including focal adhesion kinase (FAK) and the mitogen-activated proteins kinases (MAPKs). Theoretical analyses predict that stress fibers can relax perturbations in tension depending on the rate of matrix strain. Thus, we hypothesized stress fiber organization and MAPK activities are altered to an extent dependent on stretch frequency. PRINCIPAL FINDINGS: Bovine aortic endothelial cells and human osteosarcoma cells expressing GFP-actin were cultured on elastic membranes and subjected to various patterns of stretch. Cyclic stretching resulted in strain rate-dependent increases in stress fiber alignment, cell retraction, and the phosphorylation of the MAPKs JNK, ERK and p38. Transient step changes in strain rate caused proportional transient changes in the levels of JNK and ERK phosphorylations without affecting stress fiber organization. Disrupting stress fiber contractile function with cytochalasin D or Y27632 decreased the levels of JNK and ERK phosphorylation. Previous studies indicate that FAK is required for stretch-induced cell alignment and MAPK activations. However, cyclic uniaxial stretching induced stress fiber alignment and the phosphorylation of JNK, ERK and p38 to comparable levels in FAK-null and FAK-expressing mouse embryonic fibroblasts. CONCLUSIONS: These results indicate that cyclic stretch-induced stress fiber alignment, cell retraction, and MAPK activations occur as a consequence of perturbations in fiber strain. These findings thus shed new light into the roles of stress fiber relaxation and reorganization in maintenance of tensional homeostasis in a dynamic mechanical environment
    • …
    corecore