32 research outputs found

    Brain derived neurotrophic factor (BDNF), its tyrosine kinase receptor B (TrkB) and nicotine

    Full text link
    © 2018 Elsevier B.V. Nicotine is the major neurotoxicant in cigarettes that affects many transmitter systems within the brain as well as other factors, including the growth factors. Brain derived neurotrophic factor (BDNF), is the most abundant growth factor in the brain and plays a critical role in early new neuron differentiation, development and synapsis growth, and the survival of fully developed neurons and synaptic activity. Over the past 3 decades, data has emerged on the effects of nicotine and cigarette smoke exposure on the expression of BDNF and its primary specific receptor tyrosine kinase receptor B (TrkB). This review summarizes data regarding the changes in brain BDNF expression after nicotine or cigarette smoke exposure, and discusses their implications considering BDNF's functional roles

    Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem

    Full text link
    © 2015 Elsevier Inc. Infants exposed to cigarette smoked during pregnancy into infancy have increased respiratory and cardiac abnormalities. Nicotine, the major neurotoxic component of cigarette smoke, induces its actions by binding to nicotinic acetylcholine receptors (nAChR), with one downstream effect being increased apoptosis. Using a pre- into post- natal cigarette smoke exposure mouse model (SE), we studied the immunohistochemical expression of nAChR subunits α2, α3, α4, α5, α7, α9, β1 and β2 and two markers of apoptosis, active caspase-3 and TUNEL, in seven nuclei of the medulla and facial nucleus of the pons in male mice. Pups of dams exposed to two cigarettes (nicotine ≤1.2mg, CO ≤ 15mg) twice daily for six weeks prior to mating, during gestation and lactation (n=5; SE), were compared to pups exposed to air under the same condition (n=5; SHAM) at P20. Results showed that the hypoglossal nucleus had increased α3, α4, α7, α9, Casp-3 and TUNEL, dorsal motor nucleus of the vagus had increased α3, α5, α7, β1 and Casp-3, nucleus of the solitary tract had increased α3 but decreased α4, α5, β1 and apoptosis, cuneate nucleus had increased α3, β2 and Casp- 3, but decreased α5, nucleus of the spinal trigeminal tract had increased α3, α7, β1, lateral reticular nucleus had decreased β1, inferior olivary nucleus had increased β1 but decreased apoptosis, and the facial had increased α2, α3 and α7. This is the first study to demonstrate that nAChR subunits are affected following pre- into post-natal SE and that they simultaneously coincided with changes in apoptotic expression

    Effects of prenatal cigarette smoke exposure on BDNF, PACAP, microglia and gliosis expression in the young male mouse brainstem

    Full text link
    © 2019 Elsevier B.V. Cigarette smoke exposure during pregnancy into infancy affects brain growth and development in both short and long term (into adulthood). Using a mouse model of pre- into post- natal cigarette smoke exposure (SE), we aimed to determine the effects on brain derived neurotrophic factor (BDNF) and its receptor TrkB, neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor PAC1, and astrocyte (GFAP) and microglia (Iba-1) immunohistochemical expression, in seven nuclei of the medulla and the facial (FAC) nucleus of the pons. Male pups of dams exposed to two cigarettes (nicotine <1.2 mg, CO <15 mg) twice daily for six weeks prior to mating, during gestation and lactation (n = 5; SE), were compared to pups exposed to air under the same condition (n = 5; SHAM) at postnatal day 20. Expression changes were only evident for BDNF, TrkB and PAC1 and included decreased BDNF in the hypoglossal (XII) nucleus and nucleus of the solitary tract (NTS), increased TrkB in XII but decreased TrkB in the FAC, and increased PAC1 in 4 nuclei of the medulla including the NTS. These results suggest that the effect of SE on the brainstem are region and marker selective, affecting regions of respiratory control (XII and NTS), and restricted to the BDNF system and PAC1, with no effect on activation states of astrocytes or microglia

    A perspective on SIDS pathogenesis. The hypotheses: plausibility and evidence

    Get PDF
    Several theories of the underlying mechanisms of Sudden Infant Death Syndrome (SIDS) have been proposed. These theories have born relatively narrow beach-head research programs attracting generous research funding sustained for many years at expense to the public purse. This perspective endeavors to critically examine the evidence and bases of these theories and determine their plausibility; and questions whether or not a safe and reasoned hypothesis lies at their foundation. The Opinion sets specific criteria by asking the following questions: 1. Does the hypothesis take into account the key pathological findings in SIDS? 2. Is the hypothesis congruent with the key epidemiological risk factors? 3. Does it link 1 and 2? Falling short of any one of these answers, by inference, would imply insufficient grounds for a sustainable hypothesis. Some of the hypotheses overlap, for instance, notional respiratory failure may encompass apnea, prone sleep position, and asphyxia which may be seen to be linked to co-sleeping. For the purposes of this paper, each element will be assessed on the above criteria

    Developmental Hippocampal Neuroplasticity in a Model of Nicotine Replacement Therapy during Pregnancy and Breastfeeding

    Get PDF
    The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT) as a smoking cessation method during pregnancy.In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG) of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP).Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation) and glutamatergic electrophysiological activity were measured in pups.Juvenile (P15) and adolescent (P41) offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups.These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion

    The unfolded protein response and apoptotic regulation in the human placenta due to maternal cigarette smoking and pre-eclampsia

    No full text
    Maternal cigarette smoking (CS) and pre-eclampsia (PE) alter placental function and expression of important proteins which maintain homeostasis. Two interlinked pathways of interest are the unfolded protein response (UPR) and apoptosis. The UPR is upregulated in the PE placenta, but no data is available on the effects of CS and how it correlates with apoptotic expression. Samples of human placental tissue from normotensive non-smokers (n = 8), women with PE (n = 8), and CS (n = 8) were analysed using immunohistochemistry for 3 UPR markers (phosphorylated PKR-like endoplasmic reticulum (ER) kinase (pPERK), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6)), and an antibody microarray for 19 apoptotic and stress regulating markers. For the PE group compared to the normotensive group, staining for pPERK was increased in decidual tissue and villi, and for IRE1, the overall percentage of stained villi per field of view was increased. There were no differences in UPR expression comparing CS to controls. Of the apoptotic markers, only IκBα (Ser32/36), which is part of an inhibitory pathway, showed a significant decrease in the PE and CS groups compared to controls. These findings suggest UPR regulation is more evident in PE with a general increase in ER stress due to decreased inhibition of apoptosis as compared to CS for which UPR was not altered

    Brain health is independently impaired by E-vaping and high-fat diet.

    Full text link
    Tobacco smoking and high-fat diet (HFD) independently impair short-term memory. E-cigarettes produce e-vapour containing flavourings and nicotine. Here, we investigated whether e-vapour inhalation interacts with HFD to affect short-term memory and neural integrity. Balb/c mice (7 weeks, male) were fed a HFD (43% fat, 20 kJ/g) for 16 weeks. In the last 6 weeks, half of the mice were exposed to tobacco-flavoured e-vapour from nicotine-containing (18 mg/L) or nicotine-free (0 mg/L) e-fluids twice daily. Short-term memory function was measured in week 15. HFD alone did not impair memory function, but increased brain phosphorylated (p)-Tau and astrogliosis marker, while neuron and microglia levels were decreased. E-vapour exposure significantly impaired short-term memory function independent of diet and nicotine. Nicotine free e-vapour induced greater changes compared to the nicotine e-vapour and included, increased systemic cytokines, increased brain p-Tau and decreased postsynaptic density protein (PSD)-95 levels in chow-fed mice, and decreased astrogliosis marker, increased microglia and increased glycogen synthase kinase levels in HFD-fed mice. Increased hippocampal apoptosis was also differentially observed in chow and HFD mice. In conclusion, E-vapour exposure impaired short-term memory independent of diet and nicotine, and was correlated to increased systemic inflammation, reduced PSD-95 level and increased astrogliosis in chow-fed mice, but decreased gliosis and increased microglia in HFD-fed mice, indicating the inflammatory nature of e-vapour leading to short term memory impairment
    corecore