17,685 research outputs found

    State Vector Reduction as a Shadow of a Noncommutative Dynamics

    Full text link
    A model, based on a noncommutative geometry, unifying general relativity with quantum mechanics, is further develped. It is shown that the dynamics in this model can be described in terms of one-parameter groups of random operators. It is striking that the noncommutative counterparts of the concept of state and that of probability measure coincide. We also demonstrate that the equation describing noncommutative dynamics in the quantum gravitational approximation gives the standard unitary evolution of observables, and in the "space-time limit" it leads to the state vector reduction. The cases of the spin and position operators are discussed in details.Comment: 20 pages, LaTex, no figure

    Conceptual Unification of Gravity and Quanta

    Get PDF
    We present a model unifying general relativity and quantum mechanics. The model is based on the (noncommutative) algebra \mbox{{\cal A}} on the groupoid \Gamma = E \times G where E is the total space of the frame bundle over spacetime, and G the Lorentz group. The differential geometry, based on derivations of \mbox{{\cal A}}, is constructed. The eigenvalue equation for the Einstein operator plays the role of the generalized Einstein's equation. The algebra \mbox{{\cal A}}, when suitably represented in a bundle of Hilbert spaces, is a von Neumann algebra \mathcal{M} of random operators representing the quantum sector of the model. The Tomita-Takesaki theorem allows us to define the dynamics of random operators which depends on the state \phi . The same state defines the noncommutative probability measure (in the sense of Voiculescu's free probability theory). Moreover, the state \phi satisfies the Kubo-Martin-Schwinger (KMS) condition, and can be interpreted as describing a generalized equilibrium state. By suitably averaging elements of the algebra \mbox{{\cal A}}, one recovers the standard geometry of spacetime. We show that any act of measurement, performed at a given spacetime point, makes the model to collapse to the standard quantum mechanics (on the group G). As an example we compute the noncommutative version of the closed Friedman world model. Generalized eigenvalues of the Einstein operator produce the correct components of the energy-momentum tensor. Dynamics of random operators does not ``feel'' singularities.Comment: 28 LaTex pages. Substantially enlarged version. Improved definition of generalized Einstein's field equation

    Anatomy of Malicious Singularities

    Full text link
    As well known, the b-boundaries of the closed Friedman world model and of Schwarzschild solution consist of a single point. We study this phenomenon in a broader context of differential and structured spaces. We show that it is an equivalence relation ρ\rho , defined on the Cauchy completed total space Eˉ\bar{E} of the frame bundle over a given space-time, that is responsible for this pathology. A singularity is called malicious if the equivalence class [p0][p_0] related to the singularity remains in close contact with all other equivalence classes, i.e., if p0cl[p]p_0 \in \mathrm{cl}[p] for every pEp \in E. We formulate conditions for which such a situation occurs. The differential structure of any space-time with malicious singularities consists only of constant functions which means that, from the topological point of view, everything collapses to a single point. It was noncommutative geometry that was especially devised to deal with such situations. A noncommutative algebra on Eˉ\bar{E}, which turns out to be a von Neumann algebra of random operators, allows us to study probabilistic properties (in a generalized sense) of malicious singularities. Our main result is that, in the noncommutative regime, even the strongest singularities are probabilistically irrelevant.Comment: 16 pages in LaTe

    A class of multivariate distribution-free tests of independence based on graphs

    Get PDF
    AbstractA class of distribution-free tests is proposed for the independence of two subsets of response coordinates. The tests are based on the pairwise distances across subjects within each subset of the response. A complete graph is induced by each subset of response coordinates, with the sample points as nodes and the pairwise distances as the edge weights. The proposed test statistic depends only on the rank order of edges in these complete graphs. The response vector may be of any dimensions. In particular, the number of samples may be smaller than the dimensions of the response. The test statistic is shown to have a normal limiting distribution with known expectation and variance under the null hypothesis of independence. The exact distribution free null distribution of the test statistic is given for a sample of size 14, and its Monte-Carlo approximation is considered for larger sample sizes. We demonstrate in simulations that this new class of tests has good power properties for very general alternatives

    Scarring by homoclinic and heteroclinic orbits

    Full text link
    In addition to the well known scarring effect of periodic orbits, we show here that homoclinic and heteroclinic orbits, which are cornerstones in the theory of classical chaos, also scar eigenfunctions of classically chaotic systems when associated closed circuits in phase space are properly quantized, thus introducing strong quantum correlations. The corresponding quantization rules are also established. This opens the door for developing computationally tractable methods to calculate eigenstates of chaotic systems.Comment: 5 pages, 4 figure

    Space probe/satellite ejection apparatus for spacecraft

    Get PDF
    An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height
    corecore