17,685 research outputs found
State Vector Reduction as a Shadow of a Noncommutative Dynamics
A model, based on a noncommutative geometry, unifying general relativity with
quantum mechanics, is further develped. It is shown that the dynamics in this
model can be described in terms of one-parameter groups of random operators. It
is striking that the noncommutative counterparts of the concept of state and
that of probability measure coincide. We also demonstrate that the equation
describing noncommutative dynamics in the quantum gravitational approximation
gives the standard unitary evolution of observables, and in the "space-time
limit" it leads to the state vector reduction. The cases of the spin and
position operators are discussed in details.Comment: 20 pages, LaTex, no figure
Conceptual Unification of Gravity and Quanta
We present a model unifying general relativity and quantum mechanics. The
model is based on the (noncommutative) algebra \mbox{{\cal A}} on the groupoid
\Gamma = E \times G where E is the total space of the frame bundle over
spacetime, and G the Lorentz group. The differential geometry, based on
derivations of \mbox{{\cal A}}, is constructed. The eigenvalue equation for the
Einstein operator plays the role of the generalized Einstein's equation. The
algebra \mbox{{\cal A}}, when suitably represented in a bundle of Hilbert
spaces, is a von Neumann algebra \mathcal{M} of random operators representing
the quantum sector of the model. The Tomita-Takesaki theorem allows us to
define the dynamics of random operators which depends on the state \phi . The
same state defines the noncommutative probability measure (in the sense of
Voiculescu's free probability theory). Moreover, the state \phi satisfies the
Kubo-Martin-Schwinger (KMS) condition, and can be interpreted as describing a
generalized equilibrium state. By suitably averaging elements of the algebra
\mbox{{\cal A}}, one recovers the standard geometry of spacetime. We show that
any act of measurement, performed at a given spacetime point, makes the model
to collapse to the standard quantum mechanics (on the group G). As an example
we compute the noncommutative version of the closed Friedman world model.
Generalized eigenvalues of the Einstein operator produce the correct components
of the energy-momentum tensor. Dynamics of random operators does not ``feel''
singularities.Comment: 28 LaTex pages. Substantially enlarged version. Improved definition
of generalized Einstein's field equation
Anatomy of Malicious Singularities
As well known, the b-boundaries of the closed Friedman world model and of
Schwarzschild solution consist of a single point. We study this phenomenon in a
broader context of differential and structured spaces. We show that it is an
equivalence relation , defined on the Cauchy completed total space
of the frame bundle over a given space-time, that is responsible for
this pathology. A singularity is called malicious if the equivalence class
related to the singularity remains in close contact with all other
equivalence classes, i.e., if for every . We
formulate conditions for which such a situation occurs. The differential
structure of any space-time with malicious singularities consists only of
constant functions which means that, from the topological point of view,
everything collapses to a single point. It was noncommutative geometry that was
especially devised to deal with such situations. A noncommutative algebra on
, which turns out to be a von Neumann algebra of random operators,
allows us to study probabilistic properties (in a generalized sense) of
malicious singularities. Our main result is that, in the noncommutative regime,
even the strongest singularities are probabilistically irrelevant.Comment: 16 pages in LaTe
A class of multivariate distribution-free tests of independence based on graphs
AbstractA class of distribution-free tests is proposed for the independence of two subsets of response coordinates. The tests are based on the pairwise distances across subjects within each subset of the response. A complete graph is induced by each subset of response coordinates, with the sample points as nodes and the pairwise distances as the edge weights. The proposed test statistic depends only on the rank order of edges in these complete graphs. The response vector may be of any dimensions. In particular, the number of samples may be smaller than the dimensions of the response. The test statistic is shown to have a normal limiting distribution with known expectation and variance under the null hypothesis of independence. The exact distribution free null distribution of the test statistic is given for a sample of size 14, and its Monte-Carlo approximation is considered for larger sample sizes. We demonstrate in simulations that this new class of tests has good power properties for very general alternatives
Scarring by homoclinic and heteroclinic orbits
In addition to the well known scarring effect of periodic orbits, we show
here that homoclinic and heteroclinic orbits, which are cornerstones in the
theory of classical chaos, also scar eigenfunctions of classically chaotic
systems when associated closed circuits in phase space are properly quantized,
thus introducing strong quantum correlations. The corresponding quantization
rules are also established. This opens the door for developing computationally
tractable methods to calculate eigenstates of chaotic systems.Comment: 5 pages, 4 figure
Space probe/satellite ejection apparatus for spacecraft
An ejection apparatus for spinning and propelling objects for ejection from a spacecraft at a desired velocity and rotational speed is discussed. The apparatus includes a launch cradle on which the space object to be ejected rests. The cradle is rotatably supported by a central hub secured to the upper end of the pneumatic cylinder piston shaft. Release mechanisms consisting of a retractable pin and locking lug is utilized to hold the cradle and object to be ejected. The release mechanism has a fixed barrier member which holds the retractable pin in engagement with the locking lug until release by upward movement of the launch cradle beyond the barrier height
- …