4,853 research outputs found
Analysing partner selection through exchange values
Dynamic and resource-constrained environments raise interesting issues for partnership formation and multi-agent systems. In a scenario in which agents interact with each other to exchange services, if computational resources are limited, agents cannot always accept a request, and may take time to find available partners to delegate their needed services. Several approaches are available to solve this problem, which we explore through an experimental evaluation in this paper. In particular, we provide a computational implementation of Piaget's exchange-values theory, and compare its performance against alternatives
Charge Detection in a Closed-Loop Aharonov-Bohm Interferometer
We report on a study of complementarity in a two-terminal "closed-loop"
Aharonov-Bohm interferometer. In this interferometer, the simple picture of
two-path interference cannot be applied. We introduce a nearby quantum point
contact to detect the electron in a quantum dot inserted in the interferometer.
We found that charge detection reduces but does not completely suppress the
interference even in the limit of perfect detection. We attribute this
phenomenon to the unique nature of the closed-loop interferometer. That is, the
closed-loop interferometer cannot be simply regarded as a two-path
interferometer because of multiple reflections of electrons. As a result, there
exist indistinguishable paths of the electron in the interferometer and the
interference survives even in the limit of perfect charge detection. This
implies that charge detection is not equivalent to path detection in a
closed-loop interferometer. We also discuss the phase rigidity of the
transmission probability for a two-terminal conductor in the presence of a
detector.Comment: 4 pages with 4 figure
A Hierarchical Bayesian Trust Model based on Reputation and Group Behaviour
In many systems, agents must rely on their peers to achieve their goals. However, when trusted to perform an action, an agent may betray that trust by not behaving as required. Agents must therefore estimate the behaviour of their peers, so that they may identify reliable interaction partners. To this end, we present a Bayesian trust model (HABIT) for assessing trust based on direct experience and (potentially unreliable) reputation. Although existing approaches claim to achieve this, most rely on heuristics with little theoretical foundation. In contrast, HABIT is based on principled statistical techniques; can be used with any representation of behaviour; and can assess trust based on observed similarities between groups of agents. In this paper, we describe the theoretical aspects of the model and present experimental results in which HABIT was shown to be up to twice as accurate at predicting trustee performance as an existing state-of-the-art trust model
Nonequilibrium Stationary States and Phase Transitions in Directed Ising Models
We study the nonequilibrium properties of directed Ising models with non
conserved dynamics, in which each spin is influenced by only a subset of its
nearest neighbours. We treat the following models: (i) the one-dimensional
chain; (ii) the two-dimensional square lattice; (iii) the two-dimensional
triangular lattice; (iv) the three-dimensional cubic lattice. We raise and
answer the question: (a) Under what conditions is the stationary state
described by the equilibrium Boltzmann-Gibbs distribution? We show that for
models (i), (ii), and (iii), in which each spin "sees" only half of its
neighbours, there is a unique set of transition rates, namely with exponential
dependence in the local field, for which this is the case. For model (iv), we
find that any rates satisfying the constraints required for the stationary
measure to be Gibbsian should satisfy detailed balance, ruling out the
possibility of directed dynamics. We finally show that directed models on
lattices of coordination number with exponential rates cannot
accommodate a Gibbsian stationary state. We conjecture that this property
extends to any form of the rates. We are thus led to the conclusion that
directed models with Gibbsian stationary states only exist in dimension one and
two. We then raise the question: (b) Do directed Ising models, augmented by
Glauber dynamics, exhibit a phase transition to a ferromagnetic state? For the
models considered above, the answers are open problems, to the exception of the
simple cases (i) and (ii). For Cayley trees, where each spin sees only the
spins further from the root, we show that there is a phase transition provided
the branching ratio, , satisfies
Statistics of quantum transmission in one dimension with broad disorder
We study the statistics of quantum transmission through a one-dimensional
disordered system modelled by a sequence of independent scattering units. Each
unit is characterized by its length and by its action, which is proportional to
the logarithm of the transmission probability through this unit. Unit actions
and lengths are independent random variables, with a common distribution that
is either narrow or broad. This investigation is motivated by results on
disordered systems with non-stationary random potentials whose fluctuations
grow with distance.
In the statistical ensemble at fixed total sample length four phases can be
distinguished, according to the values of the indices characterizing the
distribution of the unit actions and lengths. The sample action, which is
proportional to the logarithm of the conductance across the sample, is found to
obey a fluctuating scaling law, and therefore to be non-self-averaging, in
three of the four phases. According to the values of the two above mentioned
indices, the sample action may typically grow less rapidly than linearly with
the sample length (underlocalization), more rapidly than linearly
(superlocalization), or linearly but with non-trivial sample-to-sample
fluctuations (fluctuating localization).Comment: 26 pages, 4 figures, 1 tabl
Enhanced quantum tunnelling induced by disorder
We reconsider the problem of the enhancement of tunnelling of a quantum
particle induced by disorder of a one-dimensional tunnel barrier of length ,
using two different approximate analytic solutions of the invariant imbedding
equations of wave propagation for weak disorder. The two solutions are
complementary for the detailed understanding of important aspects of numerical
results on disorder-enhanced tunnelling obtained recently by Kim et al. (Phys.
rev. B{\bf 77}, 024203 (2008)). In particular, we derive analytically the
scaled wavenumber -threshold where disorder-enhanced tunnelling of an
incident electron first occurs, as well as the rate of variation of the
transmittance in the limit of vanishing disorder. Both quantities are in good
agreement with the numerical results of Kim et al. Our non-perturbative
solution of the invariant imbedding equations allows us to show that the
disorder enhances both the mean conductance and the mean resistance of the
barrier.Comment: 10 page
The ART of IAM: The Winning Strategy for the 2006 Competition
In many dynamic open systems, agents have to interact with one another to achieve their goals. Here, agents may be self-interested, and when trusted to perform an action for others, may betray that trust by not performing the actions as required. In addition, due to the size of such systems, agents will often interact with other agents with which they have little or no past experience. This situation has led to the development of a number of trust and reputation models, which aim to facilitate an agent's decision making in the face of uncertainty regarding the behaviour of its peers. However, these multifarious models employ a variety of different representations of trust between agents, and measure performance in many different ways. This has made it hard to adequately evaluate the relative properties of different models, raising the need for a common platform on which to compare competing mechanisms. To this end, the ART Testbed Competition has been proposed, in which agents using different trust models compete against each other to provide services in an open marketplace. In this paper, we present the winning strategy for this competition in 2006, provide an analysis of the factors that led to this success, and discuss lessons learnt from the competition about issues of trust in multiagent systems in general. Our strategy, IAM, is Intelligent (using statistical models for opponent modelling), Abstemious (spending its money parsimoniously based on its trust model) and Moral (providing fair and honest feedback to those that request it)
mRNA of bovine tissue inhibitor of metalloproteinase: Sequence and expression in bovine ovarian tissue
- …
