23,214 research outputs found

    Consolidated List of Requirements

    Get PDF
    This document is a consolidated catalogue of requirements for the Electronic Health Care Record (EHCR) and Electronic Health Care Record Architecture (EHCRA), gleaned largely from work done in the EU Framework III and IV programmes and CEN, but also including input from other sources including world-wide standardisation initiatives. The document brings together the relevant work done into a classified inventory of requirements to inform the on-going standardisation process as well as act as a guide to future implementation of EHCRA-based systems. It is meant as a contribution both to understanding of the standard and to the work that is being considered to improve the standard. Major features include the classification into issues affecting the Health Care Record, the EHCR, EHCR processing, EHCR interchange and the sharing of health care information and EHCR systems. The principal information sources are described briefly. It is offered as documentation that is complementary to the four documents of the ENV 13606 Parts I-IV produced by CEN Pts 26,27,28,29. The requirements identified and classified in this deliverable are referenced in other deliverables

    A Block Minorization--Maximization Algorithm for Heteroscedastic Regression

    Full text link
    The computation of the maximum likelihood (ML) estimator for heteroscedastic regression models is considered. The traditional Newton algorithms for the problem require matrix multiplications and inversions, which are bottlenecks in modern Big Data contexts. A new Big Data-appropriate minorization--maximization (MM) algorithm is considered for the computation of the ML estimator. The MM algorithm is proved to generate monotonically increasing sequences of likelihood values and to be convergent to a stationary point of the log-likelihood function. A distributed and parallel implementation of the MM algorithm is presented and the MM algorithm is shown to have differing time complexity to the Newton algorithm. Simulation studies demonstrate that the MM algorithm improves upon the computation time of the Newton algorithm in some practical scenarios where the number of observations is large

    A quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors

    Full text link
    We describe a new polynomial time quantum algorithm that uses the quantum fast fourier transform to find eigenvalues and eigenvectors of a Hamiltonian operator, and that can be applied in cases (commonly found in ab initio physics and chemistry problems) for which all known classical algorithms require exponential time. Applications of the algorithm to specific problems are considered, and we find that classically intractable and interesting problems from atomic physics may be solved with between 50 and 100 quantum bits.Comment: 10 page

    Cosmological versus Intrinsic: The Correlation between Intensity and the Peak of the nu F_nu Spectrum of Gamma Ray Bursts

    Get PDF
    We present results of correlation studies, examining the association between the peak of the nu F_nu spectrum of gamma ray bursts, E_p, with the burst's energy fluence and photon peak flux. We discuss methods to account for data truncation in E_p and fluence or flux when performing the correlation analyses. However, because bursts near the detector threshold are not usually able to provide reliable spectral parameters, we focus on results for the brightest bursts in which we can better understand the selection effects relevant to E_p and burst strength. We find that there is a strong correlation between total fluence and E_p. We discuss these results in terms of both cosmological and intrinsic effects. In particular, we show that for realistic distributions of the burst parameters, cosmological expansion alone cannot account for the correlation between E_p and total fluence; the observed correlation is likely a result of an intrinsic relation between the burst rest-frame peak energy and the total radiated energy. We investigate this latter scenario in the context of synchrotron radiation from external and internal shock models of GRBs. We find that the internal shock model is consistent with our interpretation of the correlation, while the external shock model cannot easily explain this intrinsic relation between peak energy and burst radiated energy.Comment: 23 pages, including 8 postscript figures. Submitted to Ap
    • …
    corecore