2,935 research outputs found
Relational physics with real rods and clocks and the measurement problem of quantum mechanics
The use of real clocks and measuring rods in quantum mechanics implies a
natural loss of unitarity in the description of the theory. We briefly review
this point and then discuss the implications it has for the measurement problem
in quantum mechanics. The intrinsic loss of coherence allows to circumvent some
of the usual objections to the measurement process as due to environmental
decoherence.Comment: 19 pages, RevTex, no figure
Asymptotics of Quantum Relative Entropy From Representation Theoretical Viewpoint
In this paper it was proved that the quantum relative entropy can be asymptotically attained by Kullback Leibler divergences of
probabilities given by a certain sequence of POVMs. The sequence of POVMs
depends on , but is independent of the choice of .Comment: LaTeX2e. 8 pages. The title was changed from "Asymptotic Attainment
for Quantum Relative Entropy
Quantum ratchets in dissipative chaotic systems
Using the method of quantum trajectories we study a quantum chaotic
dissipative ratchet appearing for particles in a pulsed asymmetric potential in
the presence of a dissipative environment. The system is characterized by
directed transport emerging from a quantum strange attractor. This model
exhibits, in the limit of small effective Planck constant, a transition from
quantum to classical behavior, in agreement with the correspondence principle.
We also discuss parameter values suitable for implementation of the quantum
ratchet effect with cold atoms in optical lattices.Comment: Significant changes: Several text improvements and new results.
Figure 2 modified. Figure 4 adde
On the quantum, classical and total amount of correlations in a quantum state
We give an operational definition of the quantum, classical and total amount
of correlations in a bipartite quantum state. We argue that these quantities
can be defined via the amount of work (noise) that is required to erase
(destroy) the correlations: for the total correlation, we have to erase
completely, for the quantum correlation one has to erase until a separable
state is obtained, and the classical correlation is the maximal correlation
left after erasing the quantum correlations.
In particular, we show that the total amount of correlations is equal to the
quantum mutual information, thus providing it with a direct operational
interpretation for the first time. As a byproduct, we obtain a direct,
operational and elementary proof of strong subadditivity of quantum entropy.Comment: 12 pages ReVTeX4, 2 eps figures. v2 has some arguments clarified and
references update
Structure of the Algebra of Effective Observables in Quantum Mechanics
A subclass of dynamical semigroups induced by the interaction of a quantum
system with an environment is introduced. Such semigroups lead to the selection
of a stable subalgebra of effective observables. The structure of this
subalgebra is completely determined
Environment Induced Entanglement in Markovian Dissipative Dynamics
We show that two, non interacting 2-level systems, immersed in a common bath,
can become mutually entangled when evolving according to a Markovian,
completely positive reduced dynamics.Comment: 4 pages, LaTex, no figures, added reference
Quantum thermodynamics with missing reference frames: Decompositions of free energy into non-increasing components
If an absolute reference frame with respect to time, position, or orientation
is missing one can only implement quantum operations which are covariant with
respect to the corresponding unitary symmetry group G. Extending observations
of Vaccaro et al., I argue that the free energy of a quantum system with
G-invariant Hamiltonian then splits up into the Holevo information of the orbit
of the state under the action of G and the free energy of its orbit average.
These two kinds of free energy cannot be converted into each other. The first
component is subadditive and the second superadditive; in the limit of
infinitely many copies only the usual free energy matters.
Refined splittings of free energy into more than two independent
(non-increasing) terms can be defined by averaging over probability measures on
G that differ from the Haar measure.
Even in the presence of a reference frame, these results provide lower bounds
on the amount of free energy that is lost after applying a covariant channel.
If the channel properly decreases one of these quantities, it decreases the
free energy necessarily at least by the same amount, since it is unable to
convert the different forms of free energies into each other.Comment: 17 pages, latex, 1 figur
A Discrete Four Stroke Quantum Heat Engine Exploring the Origin of Friction
The optimal power performance of a first principle quantum heat engine model
shows friction-like phenomena when the internal fluid Hamiltonian does not
commute with the external control field. The model is based on interacting
two-level-systems where the external magnetic field serves as a control
variable.Comment: 4 pages 3 figure
Conditions for strictly purity-decreasing quantum Markovian dynamics
The purity, Tr(rho^2), measures how pure or mixed a quantum state rho is. It
is well known that quantum dynamical semigroups that preserve the identity
operator (which we refer to as unital) are strictly purity-decreasing
transformations. Here we provide an almost complete characterization of the
class of strictly purity-decreasing quantum dynamical semigroups. We show that
in the case of finite-dimensional Hilbert spaces a dynamical semigroup is
strictly purity-decreasing if and only if it is unital, while in the infinite
dimensional case, unitality is only sufficient.Comment: 4 pages, no figures. Contribution to the special issue "Real-time
dynamics in complex quantum systems" of Chemical Physics in honor of Phil
Pechukas. v2: Simplified proof of theorem 1 and validity conditions clarifie
- …
