330 research outputs found

    Decoherence Effects in Reactive Scattering

    Full text link
    Decoherence effects on quantum and classical dynamics in reactive scattering are examined using a Caldeira-Leggett type model. Through a study of dynamics of the collinear H+H2 reaction and the transmission over simple one-dimensional barrier potentials, we show that decoherence leads to improved agreement between quantum and classical reaction and transmission probabilities, primarily by increasing the energy dispersion in a well defined way. Increased potential nonlinearity is seen to require larger decoherence in order to attain comparable quantum-classical agreement.Comment: 25 pages, 6 figures, to be published in J. Chem. Phy

    Is there a "most perfect fluid" consistent with quantum field theory?

    Get PDF
    It was recently conjectured that the ratio of the shear viscosity to entropy density, η/s \eta/ s, for any fluid always exceeds /(4πkB)\hbar/(4 \pi k_B). This conjecture was motivated by quantum field theoretic results obtained via the AdS/CFT correspondence and from empirical data with real fluids. A theoretical counterexample to this bound can be constructed from a nonrelativistic gas by increasing the number of species in the fluid while keeping the dynamics essentially independent of the species type. The question of whether the underlying structure of relativistic quantum field theory generically inhibits the realization of such a system and thereby preserves the possibility of a universal bound is considered here. Using rather conservative assumptions, it is shown here that a metastable gas of heavy mesons in a particular controlled regime of QCD provides a realization of the counterexample and is consistent with a well-defined underlying relativistic quantum field theory. Thus, quantum field theory appears to impose no lower bound on η/s\eta/s, at least for metastable fluids.Comment: 4 pages; typos corrected and references added in new versio

    Bose-Einstein Condensate Driven by a Kicked Rotor in a Finite Box

    Full text link
    We study the effect of different heating rates of a dilute Bose gas confined in a quasi-1D finite, leaky box. An optical kicked-rotor is used to transfer energy to the atoms while two repulsive optical beams are used to confine the atoms. The average energy of the atoms is localized after a large number of kicks and the system reaches a nonequilibrium steady state. A numerical simulation of the experimental data suggests that the localization is due to energetic atoms leaking over the barrier. Our data also indicates a correlation between collisions and the destruction of the Bose-Einstein condensate fraction.Comment: 7 pages, 8 figure

    The Nonlinear Permittivity Including Non-Abelian Self-interaction of Plasmons in Quark-Gluon Plasma

    Get PDF
    By decomposing the distribution functions and color field to regular and fluctuation parts, the solution of the semi-classical kinetic equations of quark-gluon plasma is analyzed. Through expanding the kinetic equations of the fluctuation parts to third order, the nonlinear permittivity including the self-interaction of gauge field is obtained and a rough numerical estimate is given out for the important \vk =0 modes of the pure gluon plasma.Comment: 7 pages, shortened version accepted by Chin.Phys.Let

    A new approximation scheme in quantum mechanics

    Get PDF
    An approximation method which combines the perturbation theory with the variational calculation is constructed for quantum mechanical problems. Using the anharmonic oscillator and the He atom as examples, we show that the present method provides an efficient scheme in estimating both the ground and the excited states. We also discuss the limitations of the present method.Comment: 14pages, to be published in Eur. J. Phy

    Time parameterization and stationary distributions in a relativistic gas

    Full text link
    In this paper we consider the effect of different time parameterizations on the stationary velocity distribution function for a relativistic gas. We clarify the distinction between two such distributions, namely the J\"{u}ttner and the modified J\"{u}ttner distributions. Using a recently proposed model of a relativistic gas, we show that the obtained results for the proper-time averaging does not lead to modified J\"{u}ttner distribution (as recently conjectured), but introduces only a Lorentz factor γ\gamma to the well-known J\"{u}ttner function which results from observer-time averaging. We obtain results for rest frame as well as moving frame in order to support our claim.Comment: 5 pages, 2 figure

    Levy distribution in many-particle quantum systems

    Full text link
    Levy distribution, previously used to describe complex behavior of classical systems, is shown to characterize that of quantum many-body systems. Using two complimentary approaches, the canonical and grand-canonical formalisms, we discovered that the momentum profile of a Tonks-Girardeau gas, -- a one-dimensional gas of NN impenetrable (hard-core) bosons, harmonically confined on a lattice at finite temperatures, obeys Levy distribution. Finally, we extend our analysis to different confinement setups and demonstrate that the tunable Levy distribution properly reproduces momentum profiles in experimentally accessible regions. Our finding allows for calibration of complex many-body quantum states by using a unique scaling exponent.Comment: 7 pages, 6 figures, results are generalized, new examples are adde

    Validity of the WKB Approximation in Calculating the Asymptotic Quasinormal Modes of Black Holes

    Full text link
    In this paper, we categorize non-rotating black hole spacetimes based on their pole structure and in each of these categories we determine whether the WKB approximation is a valid approximation for calculating the asymptotic quasinormal modes. We show that Schwarzschild black holes with the Gauss-Bonnet correction belong to the category in which the WKB approximation is invalid for calculating these modes. In this context, we further discuss and clarify some of the ambiguity in the literature surrounding the validity conditions provided for the WKB approximation.Comment: 10 page

    The non-self-adjointness of the radial momentum operator in n dimensions

    Full text link
    The non self-adjointness of the radial momentum operator has been noted before by several authors, but the various proofs are incorrect. We give a rigorous proof that the nn-dimensional radial momentum operator is not self- adjoint and has no self-adjoint extensions. The main idea of the proof is to show that this operator is unitarily equivalent to the momentum operator on L2[(0,),dr]L^{2}[(0,\infty),dr] which is not self-adjoint and has no self-adjoint extensions.Comment: Some text and a reference adde

    Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time

    Full text link
    To calculate the baryon asymmetry in the baryogenesis via leptogenesis scenario one usually uses Boltzmann equations with transition amplitudes computed in vacuum. However, the hot and dense medium and, potentially, the expansion of the universe can affect the collision terms and hence the generated asymmetry. In this paper we derive the Boltzmann equation in the curved space-time from (first-principle) Kadanoff-Baym equations. As one expects from general considerations, the derived equations are covariant generalizations of the corresponding equations in Minkowski space-time. We find that, after the necessary approximations have been performed, only the left-hand side of the Boltzmann equation depends on the space-time metric. The amplitudes in the collision term on the right--hand side are independent of the metric, which justifies earlier calculations where this has been assumed implicitly. At tree level, the matrix elements coincide with those computed in vacuum. However, the loop contributions involve additional integrals over the the distribution function.Comment: 14 pages, 5 figures, extended discussion of the constraint equations and the solution for the spectral functio
    corecore