244 research outputs found

    Exploring Evidence-Based Practice in Curriculum-Based Language Interventions​

    Get PDF
    Title: Exploring Evidence-Based Practice in Curriculum-Based Language Interventions Speech-language pathologists (SLPs) provide intervention services to 30% of individuals with language and literacy deficits in the school setting (Hoffman, Ireland, Hall-Mills, & Flynn, 2013). According to the evidence-based practice (EBP) triad, school-based SLPs use clinical expertise, client/patient/caregiver perspectives, and external scientific evidence to achieve successful treatment outcomes (“Evidence-Based Practice”, n.d.). Curriculum-based language interventions (CBLIs) make use of the student’s curriculum to provide context for language and literacy interventions. However, not many school-based SLPs use CBLIs due to several barriers (e.g., lack of availability to EBP, few trainings on implementation). The purpose of this survey is to explore Montana (MT) school-based SLPs’ knowledge of EBP, their use of EBP when designing CBLIs, and identify barriers to implementing CBLIs. A Qualtrics survey consisting of 43 questions was shared with MT school-based SLPs and SLPAs via email and Facebook shared posts; 68 responses were gathered over the course of three weeks. Preliminary results indicate between 32-58% of respondents identified are knowledgeable about the areas of EBP. Thirty-nine percent of MT school-based SLPs use EBP when implementing CBLIs. Furthermore, most SLPs stated that the greatest barrier to implementing CBLIs was lack of time to research EBPs. Additional analyses are forthcoming and will be shared. Providing CBLIs is paramount as a means of assuring academic readiness and academic success for individuals with language and literacy deficits

    Numerical simulation of strongly nonlinear and dispersive waves using a Green-Naghdi model

    Full text link
    We investigate here the ability of a Green-Naghdi model to reproduce strongly nonlinear and dispersive wave propagation. We test in particular the behavior of the new hybrid finite-volume and finite-difference splitting approach recently developed by the authors and collaborators on the challenging benchmark of waves propagating over a submerged bar. Such a configuration requires a model with very good dispersive properties, because of the high-order harmonics generated by topography-induced nonlinear interactions. We thus depart from the aforementioned work and choose to use a new Green-Naghdi system with improved frequency dispersion characteristics. The absence of dry areas also allows us to improve the treatment of the hyperbolic part of the equations. This leads to very satisfying results for the demanding benchmarks under consideration

    Three-manifold invariant from functional integration

    Full text link
    We give a precise definition and produce a path-integral computation of the normalized partition function of the abelian U(1) Chern-Simons field theory defined in a general closed oriented 3-manifold. We use the Deligne-Beilinson formalism, we sum over the inequivalent U(1) principal bundles over the manifold and, for each bundle, we integrate over the gauge orbits of the associated connection 1- forms. The result of the functional integration is compared with the abelian U(1) Reshetikhin-Turaev surgery invariant

    Asymptotic models for the generation of internal waves by a moving ship, and the dead-water phenomenon

    Full text link
    This paper deals with the dead-water phenomenon, which occurs when a ship sails in a stratified fluid, and experiences an important drag due to waves below the surface. More generally, we study the generation of internal waves by a disturbance moving at constant speed on top of two layers of fluids of different densities. Starting from the full Euler equations, we present several nonlinear asymptotic models, in the long wave regime. These models are rigorously justified by consistency or convergence results. A careful theoretical and numerical analysis is then provided, in order to predict the behavior of the flow and in which situations the dead-water effect appears.Comment: To appear in Nonlinearit

    Global well-posedness of the 3-D full water wave problem

    Full text link
    We consider the problem of global in time existence and uniqueness of solutions of the 3-D infinite depth full water wave problem. We show that the nature of the nonlinearity of the water wave equation is essentially of cubic and higher orders. For any initial interface that is sufficiently small in its steepness and velocity, we show that there exists a unique smooth solution of the full water wave problem for all time, and the solution decays at the rate 1/t1/t.Comment: 60 page

    Multiphase weakly nonlinear geometric optics for Schrodinger equations

    Full text link
    We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrodinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation on the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrodinger equation on the torus in negative order Sobolev spaces.Comment: 29 page

    The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations

    Get PDF
    In the present study we prove rigorously that in the long-wave limit, the unidirectional solutions of a class of nonlocal wave equations to which the improved Boussinesq equation belongs are well approximated by the solutions of the Camassa-Holm equation over a long time scale. This general class of nonlocal wave equations model bidirectional wave propagation in a nonlocally and nonlinearly elastic medium whose constitutive equation is given by a convolution integral. To justify the Camassa-Holm approximation we show that approximation errors remain small over a long time interval. To be more precise, we obtain error estimates in terms of two independent, small, positive parameters Ï”\epsilon and ÎŽ\delta measuring the effect of nonlinearity and dispersion, respectively. We further show that similar conclusions are also valid for the lower order approximations: the Benjamin-Bona-Mahony approximation and the Korteweg-de Vries approximation.Comment: 24 pages, to appear in Discrete and Continuous Dynamical System

    WKB analysis for nonlinear Schr\"{o}dinger equations with potential

    Full text link
    We justify the WKB analysis for the semiclassical nonlinear Schr\"{o}dinger equation with a subquadratic potential. This concerns subcritical, critical, and supercritical cases as far as the geometrical optics method is concerned. In the supercritical case, this extends a previous result by E. Grenier; we also have to restrict to nonlinearities which are defocusing and cubic at the origin, but besides subquadratic potentials, we consider initial phases which may be unbounded. For this, we construct solutions for some compressible Euler equations with unbounded source term and unbounded initial velocity.Comment: 25 pages, 11pt, a4. Appendix withdrawn, due to some inconsistencie
    • 

    corecore