22 research outputs found

    Dynamic Potential Intensity: An improved representation of the ocean's impact on tropical cyclones

    Get PDF
    To incorporate the effects of tropical cyclone (TC)-induced upper ocean mixing and sea surface temperature (SST) cooling on TC intensification, a vertical average of temperature down to a fixed depth was proposed as a replacement for SST within the framework of air-sea coupled Potential Intensity (PI). However, the depth to which TC-induced mixing penetrates may vary substantially with ocean stratification and storm state. To account for these effects, here we develop a “Dynamic Potential Intensity” (DPI) based on considerations of stratified fluid turbulence. For the Argo period 2004–2013 and the three major TC basins of the Northern Hemisphere, we show that the DPI explains 11–32% of the variance in TC intensification, compared to 0–16% using previous methods. The improvement obtained using the DPI is particularly large in the eastern Pacific where the thermocline is shallow and ocean stratification effects are strong.United States. Department of Energy. Office of Science (part of the Regional and Global Climate Modeling Program)Atlantic Oceanographic and Meteorological Laboratory (base funds

    The DeepMIP contribution to PMIP4 : experimental design for model simulations of the EECO, PETM, and pre-PETM

    No full text
    Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high (> 800 ppmv) atmospheric CO2 concentrations. Although a post-hoc intercomparison of Eocene (~50 million years ago, Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the latest Paleocene and the early Eocene. Together these form the first phase of DeepMIP – the deeptime model intercomparison project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design consists of three core paleo simulations and a set of optional sensitivity studies. The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, orbital configuration, solar constant, land surface parameters, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological datasets, which will be used to evaluate the simulations, will be developed

    Regional energy budget control of the intertropical convergence zone and application to mid-Holocene rainfall

    No full text
    Shifts in the latitude of the intertropical convergence zone - a region of intense tropical rainfall - have often been explained through changes in the atmospheric energy budget, specifically through theories that tie rainfall to meridional energy fluxes. These quantitative theories can explain shifts in the zonal mean, but often have limited relevance for regional climate shifts, such as a period of enhanced precipitation over Saharan Africa during the mid-Holocene. Here we present a theory for regional tropical rainfall shifts that utilizes both zonal and meridional energy fluxes. We first identify a qualitative link between zonal and meridional energy fluxes and rainfall variations associated with the seasonal cycle and the El Niño/Southern Oscillation. We then develop a quantitative theory based on these fluxes that relates atmospheric energy transport to tropical rainfall. When applied to the orbital configuration of the mid-Holocene, our theory predicts continental rainfall shifts over Africa and Southeast Asia that are consistent with complex model simulations. However, the predicted rainfall over the Sahara is not sufficient to sustain vegetation at a level seen in the palaeo-record, which instead requires an additional large energy source such as that due to reductions in Saharan surface albedo. We thus conclude that additional feedbacks, such as those involving changes in vegetation or soil type, are required to explain changes in rainfall over Africa during the mid-Holocene
    corecore