3,410 research outputs found

    Scalar field induced oscillations of neutron stars and gravitational collapse

    Full text link
    We study the interaction of massless scalar fields with self-gravitating neutron stars by means of fully dynamic numerical simulations of the Einstein-Klein-Gordon perfect fluid system. Our investigation is restricted to spherical symmetry and the neutron stars are approximated by relativistic polytropes. Studying the nonlinear dynamics of isolated neutron stars is very effectively performed within the characteristic formulation of general relativity, in which the spacetime is foliated by a family of outgoing light cones. We are able to compactify the entire spacetime on a computational grid and simultaneously impose natural radiative boundary conditions and extract accurate radiative signals. We study the transfer of energy from the scalar field to the fluid star. We find, in particular, that depending on the compactness of the neutron star model, the scalar wave forces the neutron star either to oscillate in its radial modes of pulsation or to undergo gravitational collapse to a black hole on a dynamical timescale. The radiative signal, read off at future null infinity, shows quasi-normal oscillations before the setting of a late time power-law tail.Comment: 12 pages, 13 figures, submitted to Phys. Rev.

    Nonlinear r-modes in Rapidly Rotating Relativistic Stars

    Full text link
    The r-mode instability in rotating relativistic stars has been shown recently to have important astrophysical implications (including the emission of detectable gravitational radiation, the explanation of the initial spins of young neutron stars and the spin-distribution of millisecond pulsars and the explanation of one type of gamma-ray bursts), provided that r-modes are not saturated at low amplitudes by nonlinear effects or by dissipative mechanisms. Here, we present the first study of nonlinear r-modes in isentropic, rapidly rotating relativistic stars, via 3-D general-relativistic hydrodynamical evolutions. Our numerical simulations show that (1) on dynamical timescales, there is no strong nonlinear coupling of r-modes to other modes at amplitudes of order one -- unless nonlinear saturation occurs on longer timescales, the maximum r-mode amplitude is of order unity (i.e., the velocity perturbation is of the same order as the rotational velocity at the equator). An absolute upper limit on the amplitude (relevant, perhaps, for the most rapidly rotating stars) is set by causality. (2) r-modes and inertial modes in isentropic stars are predominantly discrete modes and possible associated continuous parts were not identified in our simulations. (3) In addition, the kinematical drift associated with r-modes, recently found by Rezzolla, Lamb and Shapiro (2000), appears to be present in our simulations, but an unambiguous confirmation requires more precise initial data. We discuss the implications of our findings for the detectability of gravitational waves from the r-mode instability.Comment: 4 pages, 4 eps figures, accepted in Physical Review Letter

    The Post-Quasistatic Approximation as a test bed for Numerical Relativity

    Full text link
    It is shown that observers in the standard ADM 3+1 treatment of matter are the same as the observers used in the matter treatment of Bondi: they are comoving and local Minkowskian. Bondi's observers are the basis of the post--quasitatic approximation (PQSA) to study a contracting distribution of matter. This correspondence suggests the possibility of using the PQSA as a test bed for Numerical Relativity. The treatment of matter by the PQSA and its connection with the ADM 3+1 treatment are presented, for its practical use as a calibration tool and as a test bed for numerical relativistic hydrodynamic codes.Comment: 4 pages; to appear as a Brief Report in Physical Review

    Relativistic hydrodynamics on spacelike and null surfaces: Formalism and computations of spherically symmetric spacetimes

    Full text link
    We introduce a formulation of Eulerian general relativistic hydrodynamics which is applicable for (perfect) fluid data prescribed on either spacelike or null hypersurfaces. Simple explicit expressions for the characteristic speeds and fields are derived in the general case. A complete implementation of the formalism is developed in the case of spherical symmetry. The algorithm is tested in a number of different situations, predisposing for a range of possible applications. We consider the Riemann problem for a polytropic gas, with initial data given on a retarded/advanced time slice of Minkowski spacetime. We compute perfect fluid accretion onto a Schwarzschild black hole spacetime using ingoing null Eddington-Finkelstein coordinates. Tests of fluid evolution on dynamic background include constant density and TOV stars sliced along the radial null cones. Finally, we consider the accretion of self-gravitating matter onto a central black hole and the ensuing increase in the mass of the black hole horizon.Comment: 23 pages, 13 figures, submitted to Phys. Rev.

    Matter flows around black holes and gravitational radiation

    Full text link
    We develop and calibrate a new method for estimating the gravitational radiation emitted by complex motions of matter sources in the vicinity of black holes. We compute numerically the linearized curvature perturbations induced by matter fields evolving in fixed black hole backgrounds, whose evolution we obtain using the equations of relativistic hydrodynamics. The current implementation of the proposal concerns non-rotating holes and axisymmetric hydrodynamical motions. As first applications we study i) dust shells falling onto the black hole isotropically from finite distance, ii) initially spherical layers of material falling onto a moving black hole, and iii) anisotropic collapse of shells. We focus on the dependence of the total gravitational wave energy emission on the flow parameters, in particular shell thickness, velocity and degree of anisotropy. The gradual excitation of the black hole quasi-normal mode frequency by sufficiently compact shells is demonstrated and discussed. A new prescription for generating physically reasonable initial data is discussed, along with a range of technical issues relevant to numerical relativity.Comment: 27 pages, 12 encapsulated figures, revtex, amsfonts, submitted to Phys. Rev.

    Type II critical phenomena of neutron star collapse

    Full text link
    We investigate spherically-symmetric, general relativistic systems of collapsing perfect fluid distributions. We consider neutron star models that are driven to collapse by the addition of an initially "in-going" velocity profile to the nominally static star solution. The neutron star models we use are Tolman-Oppenheimer-Volkoff solutions with an initially isentropic, gamma-law equation of state. The initial values of 1) the amplitude of the velocity profile, and 2) the central density of the star, span a parameter space, and we focus only on that region that gives rise to Type II critical behavior, wherein black holes of arbitrarily small mass can be formed. In contrast to previously published work, we find that--for a specific value of the adiabatic index (Gamma = 2)--the observed Type II critical solution has approximately the same scaling exponent as that calculated for an ultrarelativistic fluid of the same index. Further, we find that the critical solution computed using the ideal-gas equations of state asymptotes to the ultrarelativistic critical solution.Comment: 24 pages, 22 figures, RevTeX 4, submitted to Phys. Rev.

    General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Get PDF
    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strength of the shock increases the speed of the fluid to relativistic values and for some critical ones is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong one. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.Comment: To appear in Journal of Physics:Conference Series:"XXIX Spanish Relativity Meeting (ERE 2006): Einstein's Legacy: From the Theoretical Paradise to Astrophysical Observations

    Relativistic Hydrodynamics around Black Holes and Horizon Adapted Coordinate Systems

    Get PDF
    Despite the fact that the Schwarzschild and Kerr solutions for the Einstein equations, when written in standard Schwarzschild and Boyer-Lindquist coordinates, present coordinate singularities, all numerical studies of accretion flows onto collapsed objects have been widely using them over the years. This approach introduces conceptual and practical complications in places where a smooth solution should be guaranteed, i.e., at the gravitational radius. In the present paper, we propose an alternative way of solving the general relativistic hydrodynamic equations in background (fixed) black hole spacetimes. We identify classes of coordinates in which the (possibly rotating) black hole metric is free of coordinate singularities at the horizon, independent of time, and admits a spacelike decomposition. In the spherically symmetric, non-rotating case, we re-derive exact solutions for dust and perfect fluid accretion in Eddington-Finkelstein coordinates, and compare with numerical hydrodynamic integrations. We perform representative axisymmetric computations. These demonstrations suggest that the use of those coordinate systems carries significant improvements over the standard approach, especially for higher dimensional studies.Comment: 10 pages, 4 postscript figures, accepted for publication in Phys. Rev.

    Gravitational waves in dynamical spacetimes with matter content in the Fully Constrained Formulation

    Full text link
    The Fully Constrained Formulation (FCF) of General Relativity is a novel framework introduced as an alternative to the hyperbolic formulations traditionally used in numerical relativity. The FCF equations form a hybrid elliptic-hyperbolic system of equations including explicitly the constraints. We present an implicit-explicit numerical algorithm to solve the hyperbolic part, whereas the elliptic sector shares the form and properties with the well known Conformally Flat Condition (CFC) approximation. We show the stability andconvergence properties of the numerical scheme with numerical simulations of vacuum solutions. We have performed the first numerical evolutions of the coupled system of hydrodynamics and Einstein equations within FCF. As a proof of principle of the viability of the formalism, we present 2D axisymmetric simulations of an oscillating neutron star. In order to simplify the analysis we have neglected the back-reaction of the gravitational waves into the dynamics, which is small (<2 %) for the system considered in this work. We use spherical coordinates grids which are well adapted for simulations of stars and allow for extended grids that marginally reach the wave zone. We have extracted the gravitational wave signature and compared to the Newtonian quadrupole and hexadecapole formulae. Both extraction methods show agreement within the numerical errors and the approximations used (~30 %).Comment: 17 pages, 9 figures, 2 tables, accepted for publication in PR

    Solubility of nickel in slags equilibrated with Ni-S melt

    Get PDF
    To provide thermodynamic data for converting the nickel matte to liquid nickel, an experimental study was conducted in the phase equilibrium between the Ni-S melt and FeOX-SiO2, FeOX-CaO or CaO-Al2O3 based slag melted in a magnesia crucible at 1773 and 1873 K. pSO2 was controlled at 10.1 kPa while pO2 and pS2 ranged between those where NiO precipitated and Ni3S2 formed, respectively. The nickel content in the slag and the sulfur content in the metal at given pO2 and pS2 were smallest for the CaO-Al2O3 based slag. Both decreased with increasing temperature. At 1873 K, the content of nickel in the CaO-Al2O3 based slag at pO2 of 10 Pa (near the precipitation of NiO) was 4%, while the content of sulfur in alloy is 0.4 mass %. Thus, the CaO-Al2O3 base slag at 1873 K would be suitable for direct converting of Ni3S2 to metallic nickel. The distribution behavior of nickel between the slag and the Ni-S melt was discussed based on the concept of oxidic and sulfidic dissolution
    corecore