24,039 research outputs found
Positive ion temperatures above the F-layer maximum
Positive ion temperatures above F layer maximum from Ariel I satellite ion mass analyze
A synoptic view of ionic constitution above the F-layer maximum
Ionic composition above F layer maximum from Ariel I satellite ion mass spectromete
Interaction of a Modulated Electron Beam with a Plasma
The results of a theoretical and experimental investigation of the high-frequency interaction of an electron beam with a plasma are reported. An electron beam, modulated at a microwave frequency, passes through a uniform region of a mercury arc discharge after which it is demodulated. Exponentially growing wave amplification along the electron beam was experimentally observed for the first time at a microwave frequency equal to the plasma frequency. Approximate theories of the effects of 1) plasma-electron collision frequencies, 2) plasma-electron thermal velocities and 3) finite beam diameter, are given. In a second experiment the interaction between a modulated electron beam and a slow electrostatic wave on a plasma column has been studied. A strong interaction occurs when the velocity of the electron beam is approximately equal to the velocity of the wave and the interaction is essentially the same as that which occurs in traveling-wave amplifiers, except that here the plasma colum replaces the usual helical slow-wave circuit. The theory predicting rates of growth is presented and compared with the experimental results
A simple method for estimation of coagulation efficiency in mixed aerosols
Aerosols of KBr and AgNO3 were mixed, exposed to light in a glass tube and collected in the dark. About 15% of the collected material was reduced to silver upon development. Thus, two aerosols of particles that react to form a photo-reducible compound can be used to measure coagulation efficiency
Detecting D-Wave Pairing and Collective Modes in Fermionic Condensates with Bragg Scattering
We show how the appearance of d-wave pairing in fermionic condensates
manifests itself in inelastic light scattering. Specifically, we calculate the
Bragg scattering intensity from the dynamic structure factor and the spin
susceptibility, which can be inferred from spin flip Raman transitions. This
information provides a precise tool with which we can identify nontrivial
correlations in the state of the system beyond the information contained in the
density profile imaging alone. Due to the lack of Coulomb effects in neutral
superfluids, this is also an opportunity to observe the Anderson-Bogoliubov
collective mode
Quantum Entanglement Initiated Super Raman Scattering
It has now been possible to prepare chain of ions in an entangled state and
thus question arises --- how the optical properties of a chain of entangled
ions differ from say a chain of independent particles. We investigate nonlinear
optical processes in such chains. We explicitly demonstrate the possibility of
entanglement produced super Raman scattering. Our results in contrast to
Dicke's work on superradiance are applicable to stimulated processes and are
thus free from the standard complications of multimode quantum electrodynamics.
Our results suggest the possibility of similar enhancement factors in other
nonlinear processes like four wave mixing.Comment: 4 pages, 1 figur
Stability of Magneto-optical Traps with Large Field Gradients: Limits on the Tight Confinement of Single Atoms
We report measurements of the stability of magneto-optical traps (MOTs) for neutral atoms in the limit of tight confinement of a single atom. For quadrupole magnetic field gradients at the trap center greater than ∼1 kG/cm, we find that stochastic diffusion of atoms out of the trapping volume becomes the dominant particle loss mechanism, ultimately limiting the MOT size to greater than ∼5 μm. We measured and modeled the diffusive loss rate as a function of laser power, detuning, and field gradient for trapped cesium atoms. In addition, for as few as two atoms, the collisional loss rates become very high for tightly confined traps, allowing the direct observation of isolated two-body atomic collisions in a MOT
Stochastic properties of systems controlled by autocatalytic reactions II
We analyzed the stochastic behavior of systems controlled by autocatalytic
reaction A+X -> X+X, X+X -> A+X, X -> B provided that the distribution of
reacting particles in the system volume is uniform, i.e. the point model of
reaction kinetics introduced in arXiv:cond-mat/0404402 can be applied. Assuming
the number of substrate particles A to be kept constant by a suitable
reservoir, we derived the forward Kolmogorov equation for the probability of
finding n=0,1,... autocatalytic particles X in the system at a given time
moment. We have shown that the stochastic model results in an equation for the
mean value of autocatalytic particles X which differs strongly from the kinetic
rate equation. It has been found that not only the law of the mass action is
violated but also the bifurcation point is disappeared in the well-known
diagram of X particle- vs. A particle-concentration. Therefore, speculations
about the role of autocatalytic reactions in processes of the "natural
selection" can be hardly supported.Comment: 17 pages, 6 figure
Effect of Inhomogeneous Heat Flow on the Enhancement of Heat Capacity in Helium-II by Counterflow near Tλ
In 2000 Harter et al. reported the first measurements of the enhancement of the heat capacity ΔCQ[equivalent]C(Q)-C(Q=0) of helium-II transporting a heat flux density Q near Tλ. Surprisingly, their measured ΔCQ was ~7–12 times larger than predicted, depending on which theory was assumed. In this report we present a candidate explanation for this discrepancy: unintended heat flux inhomogeneity. Because C(Q) should diverge at a critical heat flux density Qc, homogeneous heat flow is required for an accurate measurement. We present results from numerical analysis of the heat flow in the Harter et al. cell indicating that substantial inhomogeneity occurred. We determine the effect of the inhomogeneity on ΔCQ and find rough agreement with the observed disparity between prediction and measurement
- …