10,076 research outputs found

    Application of remote thermal scanning to the NASA energy conservation program

    Get PDF
    Airborne thermal scans of all NASA centers were made during 1975 and 1976. The remotely sensed data were used to identify a variety of heat losses, including those from building roofs and central heating system distribution lines. Thermal imagery from several NASA centers is presented to demonstrate the capability of detecting these heat losses remotely. Many heat loss areas located by the scan data were verified by ground surveys. At this point, at least for such energy-intensive areas, thermal scanning is an excellent means of detecting many possible energy losses

    Reliable aerial thermography for energy conservation

    Get PDF
    A method for energy conservation, the aerial thermography survey, is discussed. It locates sources of energy losses and wasteful energy management practices. An operational map is presented for clear sky conditions. The map outlines the key environmental conditions conductive to obtaining reliable aerial thermography. The map is developed from defined visual and heat loss discrimination criteria which are quantized based on flat roof heat transfer calculations

    Improved transmittance measurement with a magnesium oxide coated integrating sphere

    Get PDF
    Simple and convenient technique has been found for extending transmittance measurement capability of conventional magnesium oxide coated integrating sphere system at low (near ultraviolet) wavelengths. Technique can be used to determine effect of contaminants on window materials and can also be used for measurements on thermal control coatings and telescope mirrors

    Abnormal flowers and pattern formation in floral

    Get PDF
    β€œFrom our acquaintance with this abnormal enabled to unveil the secrets that normal us, and to see distinctly what, from the regular we can only infer.” - J. W. von Goethe (1790

    Genetic interactions among floral homeotic genes of Arabidopsis

    Get PDF
    We describe allelic series for three loci, mutations in which result in homeotic conversions in two adjacent whorls in the Arabidopsis thaliana flower. Both the structure of the mature flower and its development from the initial primordium are described by scanning electron microscopy. New mutations at the APETALA2 locus, ap2-2, ap2-8 and ap2-9, cause homeotic conversions in the outer two whorls: sepals to carpels (or leaves) and petals to stamens. Two new mutations of PISTILLATA, pi-2 and pi-3, cause second and third whorl organs to differentiate incorrectly. Homeotic conversions are petals to sepals and stamens to carpels, a pattern similar to that previously described for the apetala3-1 mutation. The AGAMOUS mutations, ag-2 and ag-3, affect the third and fourth whorls and cause petals to develop instead of stamens and another flower to arise in place of the gynoecium. In addition to homeotic changes, mutations at the APETALA2, APETALA3 and PISTILLATA loci may lead to reduced numbers of organs, or even their absence, in specific whorls. The bud and flower phenotypes of doubly and triply mutant strains, constructed with these and previously described alleles, are also described. Based on these results, a model is proposed that suggests that the products of these homeotic genes are each active in fields occupying two adjacent whorls, AP2 in the two outer whorls, PI and AP3 in whorls two and three, and AG in the two inner whorls. In combination, therefore, the gene products in these three concentric, overlapping fields specify the four types of organs in the wild-type flower. Further, the phenotypes of multiple mutant lines indicate that the wild-type products of the AGAMOUS and APETALA2 genes interact antagonistically. AP2 seems to keep the AG gene inactive in the two outer whorls while the converse is likely in the two inner whorls. This field model successfully predicts the phenotypes of all the singly, doubly and triply mutant flowers described

    Performance of N/p silicon and cadmium sulfide solar cells as affected by hypervelocity particle impact

    Get PDF
    Simulated micrometeoroid impact effect on silicon and cadmium sulfide solar cell performance

    A real-time PCR method for quantification of the total and major variant strains of the Deformed wing virus

    Get PDF
    Funding: ELB was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) EASTBIO Doctoral Training Partnership (http://www.bbsrc.ac.uk) [grant number BB/J01446X/1] and an Eastern Association Regional Studentship (EARS) and The Morley Agricultural Foundation awarded to ASB. CRC was supported by a KTN BBSRC CASE studentship (BB/M503526/1) (http://www.bbsrc.ac.uk), part-funded by the Scottish Beekeeping Association (https://www.scottishbeekeepers.org.uk/) and the Animal Health - Disease Prevention, Scottish Government awarded to ASB CRC. This project received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613960 (SMARTBEES) (http://www.smartbees-fp7.eu/) awarded to ASB. The funders had no role in study design, data collection and analysis decision to publish, or preparation of the manuscript. Acknowledgments The authors wish to thank Mr W. Thrale, Mr Z. Blackmore, Mr J. Quinlan, and Mr J. Palombo for sample collection from the South East of England and Margie Ramsey for Beinn Eighe National Nature Reserve sample collection.Peer reviewedPublisher PD
    • …
    corecore