59,243 research outputs found

    Reform of Preservice Science Education: An Example from a State-Supported University

    Get PDF
    The ongoing movement to reform the teaching and learning of mathematics and science began as an effort targeting grades K-12. This movement, however, also has significant implications for institutions of higher education, especially in the area of teacher preparation. Northeast Louisiana University has utilized an extensive system of support, including vital National Science Foundation funding, to redesign its science curriculum for elementary education majors. Four courses featuring the content areas of biology, chemistry, geosciences, and physics and integrated with respect to content and methodology were collaboratively developed by education and science faculty. and were approved as requirements for all preservice majors. Preliminary evaluation results with respect to students’ content knowledge and attitude are favorable. Ongoing efforts include the development of activities designed to further integrate the courses with respect to content and the execution of focused evaluative studies to reflect the degree of implementation of the reform practices that have been modeled by the university faculty

    STACBEAM 2

    Get PDF
    An investigation being conducted by Astro Aerospace Corporation (Astro) for Jet Propulsion Laboratory in which efficient structures for geosynchronous spacecraft solar arrays are being developed is discussed. Recent developments in solar blanket technology, including the introduction of ultrathin (50 micrometer) silicon solar cells with conversion efficiencies approaching 15 percent, have resulted in a significant increase in blanket specific power. System specific power depends not only on blanket mass but also on the masses of the support structure and deployment mechanism. These masses must clearly be reduced, not only to minimize launch weight, but also to increase array natural frequency. The solar array system natural frequency should be kept high in order to reduce the demands on the attitude control system. This goal is approached by decreasing system mass, by increasing structural stiffness, and by partitioning the blanket. As a result of this work, a highly efficient structure for deploying a solar array was developed

    Hexagonal spiral growth in the absence of a substrate

    Full text link
    Experiments on the formation of spiraling hexagons (350 - 1000 nm in width) from a solution of nanoparticles are presented. Transmission electron microscopy images of the reaction products of chemically synthesized cadmium nanocrystals indicate that the birth of the hexagons proceeds without assistance from static screw or edge dislocatons, that is, they spiral without constraints provided by an underlying substrate. Instead, the apparent growth mechanism relies on what we believe is a dynamical dislocation identified as a dense aggregate of small nanocrystals that straddles the spiraling hexagon at the crystal surface. This nanocrystal bundle, which we term the "feeder", also appears to release nanocrystals into the spiral during the growth process.Comment: 4 pages, 5 figure

    Design concepts for large reflector antenna structures

    Get PDF
    Practical approaches for establishing large, precise antenna reflectors in space are described. Reflector surfaces consisting of either solid panels or knitted mesh are considered. The approach using a deep articulated truss structure to support a mesh reflector is selected for detailed investigations. A new sequential deployment concept for the tetrahedral truss is explained. Good joint design is discussed, and examples are described both analytically and by means of demonstration models. The influence of curvature on the design and its vibration characteristics are investigated

    A methodology for exploiting parallelism in the finite element process

    Get PDF
    A methodology is described for developing a parallel system using a top down approach taking into account the requirements of the user. Substructuring, a popular technique in structural analysis, is used to illustrate this approach

    Solar proton monitoring system

    Get PDF
    Solar proton monitoring system in North Americ

    Semianalytic modeling of aerodynamic shapes

    Get PDF
    Equations for the semianalytic representation of a class of surfaces that vary smoothly in cross-sectional shape are presented. Some methods of fitting together and superimposing such surfaces are described. A brief discussion is also included of the application of the theory in various contexts such as computerized lofting of aerodynamic surfaces and grid generation

    Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3

    Get PDF
    Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment

    Design, development and use of the finite element machine

    Get PDF
    Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained

    Polydimethylsiloxane based microfluidic diode

    Get PDF
    In this paper, we present a novel elastomer-based microfluidic device for rectifying flow. The device is analogous to an electronic diode in function since it allows flow in one direction and stops flow in the opposing direction. The device is planar, in-line and can be replica molded via standard soft lithography techniques. The fabrication process is outlined in detail and follows a simple procedure that requires only photolithography and one replica molding step. Several geometries of devices are presented along with their flow versus pressure characteristics. A brief discussion of the device behavior is presented along with possible uses for the device
    corecore