39 research outputs found

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Assessment of poultry eggs freshness using FTIR spectroscopy combined with HCA and PCA methods

    No full text
    The main aim of this study was to investigate the use of Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR FTIR) and selected chemometric methods to classify eggs in terms of the laying hen farming method, as well as to identify changes in the individual egg compositions during storage. In total, 50 eggs were used for the study; 10 eggs per classes: 0, 1, 2, 3 and rural. Eggs were stored by 29 days period, which was divided on the 10 measuring days in which one egg from each class was tested by recording two FTIR spectra for the shell, albumen and egg yolk. The chemometric analysis, including Hierarchical Cluster Analysis (HCA) and the Principal Component Analysis (PCA), was performed based on the recorded FTIR spectra. Changes in chemical composition during the experiment in individual egg elements were analyzed. Furthermore, by analyzing the graphs (HCA and PCA) obtained by the chemometric analysis, it was noted that the largest changes in the chemical composition of eggs occurred in the shell and yolk, while in the albumen it was less insignificant. The chemometric analysis of the recorded spectra also showed that combination of chemometric methods and FTIR spectroscopy can potentially be used to develop a non-destructive method for classifying eggs in terms of the hen culture method and to monitor of their freshness

    Low-basicity 5-HT7 Receptor Agonists Synthesized Using the van Leusen Multicomponent Protocol

    Get PDF
    A series of 5-aryl-1-alkylimidazole derivatives was synthesized using the van Leusen multicomponent reaction. The chemotype is the first example of low-basicity scaffolds exhibiting high affinity for 5-HT7 receptor together with agonist function. The chosen lead compounds 3-(1-ethyl-1H-imidazol-5-yl)-5- iodo-1H-indole (AGH-107, 1o, Ki 5-HT7=6nM, EC50=19nM, 176-fold selectivity over 5-HT1AR) and 1e (5-methoxy analogue, Ki 5-HT7=30nM, EC50=60nM) exhibited high selectivity over related CNS targets, high metabolic stability and low toxicity in HEK-293 and HepG2 cell cultures. A rapid absorption to the blood, high blood-brain barrier permeation and a very high peak concentration in the brain (Cmax=2723 ng/g) were found for 1o after i.p. (5mg/kg) administration in mice. The compound was found active in novel object recognition test in mice, at 0.5, 1 and 5mg/kg. Docking to 5-HT7R homology models indicated a plausible binding mode which explain the unusually high selectivity over the related CNS targets. Halogen bond formation between the most potent derivatives and the receptor is consistent with both the docking results and SAR. 5-Chlorine, bromine and iodine substitution resulted in a 13, 27 and 89-fold increase in binding affinities, respectively, and in enhanced 5-HT1AR selectivity
    corecore