2,718 research outputs found

    Full Counting Statistics of a charge shuttle

    Full text link
    We study the charge transfer in a small grain oscillating between two leads. Coulomb blockade restricts the charge fluctuations in such a way that only zero or one additional electrons can sit on the grain. The system thus acts as a charge shuttle. We obtain the full counting statistics of charge transfer and discuss its behavior. For large oscillation amplitude the probability of transferring n~\tilde n electrons per cycle is strongly peaked around one. The peak is asymmetric since its form is controlled by different parameters for n~>1\tilde n>1 and n~<1\tilde n < 1. Under certain conditions the systems behaves as if the effective charge is 1/2 of the elementary one. Knowledge of the counting statistics gives a new insight on the mechanism of charge transfer.Comment: 8 pages, 6 figures. Minor revisions. Phys. Rev. B (in press

    Umklapp-Assisted Electron Transport Oscillations in Metal Superlattices

    Get PDF
    We consider a superlattice of parallel metal tunnel junctions with a spatially non-homogeneous probability for electrons to tunnel. In such structures tunneling can be accompanied by electron scattering that conserves energy but not momentum. In the special case of a tunneling probability that varies periodically with period aa in the longitudinal direction, i.e., perpendicular to the junctions, electron tunneling is accompanied by "umklapp" scattering, where the longitudinal momentum changes by a multiple of h/ah/a. We predict that as a result a sequence of metal-insulator transitions can be induced by an external electric- or magnetic field as the field strength is increased.Comment: 5 pages, 3 figure

    Spectroscopy of phonons and spin torques in magnetic point contacts

    Full text link
    Phonon spectroscopy is used to investigate the mechanism of current-induced spin torques in nonmagnetic/ferromagnetic (N/F) point contacts. Magnetization excitations observed in the magneto-conductance of the point contacts are pronounced for diffusive and thermal contacts, where the electrons experience significant scattering in the contact region. We find no magnetic excitations in highly ballistic contacts. Our results show that impurity scattering at the N/F interface is the origin of the new single-interface spin torque effect.Comment: 4 pages, 5 figs., accepted for publication in PR

    Planar Josephson Tunnel Junctions in an Asymmetric Magnetic Field

    Full text link
    We analyze the consequences resulting from the asymmetric boundary conditions imposed by a non-uniform external magnetic field at the extremities of a planar Josephson tunnel junction and predict a number of testable signatures. When the junction length LL is smaller than its Josephson penetration depth λj\lambda_j, static analytical calculations lead to a Fresnel-like magnetic diffraction pattern, rather than a Fraunhofer-like one typical of a uniform field. Numerical simulations allow to investigate intermediate length (LλjL\approx \lambda_j) and long (L>λjL>\lambda_j) junctions. We consider both uniform and δ\delta-shaped bias distributions. We also speculate on the possibility of exploiting the unique static properties of this system for basic experiments and devices.Comment: 9 pages, 3 figure

    MgB2 radio-frequency superconducting quantum interference device prepared by atomic force microscope lithography

    Full text link
    A new method of preparation of radio-frequency superconducting quantum interference devices on MgB2 thin films is presented. The variable-thickness bridge was prepared by a combination of optical lithography and of the scratching by an atomic force microscope. The critical current of the nanobridge was 0.35 uA at 4.2 K. Non-contact measurements of the current-phase characteristics and of the critical current vs. temperature have been investigated on our structures.Comment: RevTeX4. Accepted in Appl. Phys. Let

    Observation of a New Fluxon Resonant Mechanism in Annular Josephson Tunnel Structures

    Full text link
    A novel dynamical state has been observed in the dynamics of a perdurbed sine-Gordon system. This resonant state, has been experimentally observed as a singularity in the dc current voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. With this respect, it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Rate equations for Coulomb blockade with ferromagnetic leads

    Full text link
    We present a density-matrix rate-equation approach to sequential tunneling through a metal particle weakly coupled to ferromagnetic leads. The density-matrix description is able to deal with correlations between degenerate many-electron states that the standard rate equation formalism in terms of occupation probabilities cannot describe. Our formalism is valid for an arbitrary number of electrons on the dot, for an arbitrary angle between the polarization directions of the leads, and with or without spin-orbit scattering on the metal particle. Interestingly, we find that the density-matrix description may be necessary even for metal particles with unpolarized leads if three or more single-electron levels contribute to the transport current and electron-electron interactions in the metal particle are described by the `universal interaction Hamiltonian'.Comment: 10 pages, 4 figures, REVTeX

    Phase Modulated Thermal Conductance of Josephson Weak Links

    Full text link
    We present a theory for quasiparticle heat transport through superconducting weak links. The thermal conductance depends on the phase difference (ϕ\phi) of the superconducting leads. Branch conversion processes, low-energy Andreev bound states near the contact and the suppression of the local density of states near the gap edge are related to phase-sensitive transport processes. Theoretical results for the influence of junction transparency, temperature and disorder, on the phase modulation of the conductance are reported. For high-transmission weak links, D1D\to 1, the formation of an Andreev bound state at ϵb=Δcos(ϕ/2)\epsilon_{\text{\tiny b}}=\Delta\cos(\phi/2) leads to suppression of the density of states for the continuum excitations that transport heat, and thus, to a reduction in the conductance for ϕπ\phi\simeq\pi. For low-transmission (D1D\ll 1) barriers resonant scattering at energies ϵ(1+D/2)Δ\epsilon\simeq(1+D/2)\Delta leads to an increase in the thermal conductance as TT drops below TcT_c (for phase differences near ϕ=π\phi=\pi).Comment: 4 pages, 3 figures Expanded discussion of boundary conditions for Ricatti amplitude
    corecore